------------------------------------------------------------------------ -- The Agda standard library -- -- All library modules, along with short descriptions ------------------------------------------------------------------------ -- Note that core modules are not included. {-# OPTIONS --safe --guardedness #-} module EverythingSafe where -- Definitions of algebraic structures like monoids and rings -- (packed in records together with sets, operations, etc.) import Algebra -- Algebraic objects with an apartness relation import Algebra.Apartness -- Bundles for local algebraic structures import Algebra.Apartness.Bundles -- Properties of Heyting Commutative Rings import Algebra.Apartness.Properties.HeytingCommutativeRing -- Algebraic structures with an apartness relation import Algebra.Apartness.Structures -- Definitions of algebraic structures like monoids and rings -- (packed in records together with sets, operations, etc.) import Algebra.Bundles -- Definitions of 'raw' bundles import Algebra.Bundles.Raw -- Lemmas relating algebraic definitions (such as associativity and -- commutativity) that don't require the equality relation to be a setoid. import Algebra.Consequences.Base -- Relations between properties of functions, such as associativity and -- commutativity (specialised to propositional equality) import Algebra.Consequences.Propositional -- Relations between properties of functions, such as associativity and -- commutativity, when the underlying relation is a setoid import Algebra.Consequences.Setoid -- Definition of algebraic structures we get from freely adding an -- identity element import Algebra.Construct.Add.Identity -- Instances of algebraic structures made by taking two other instances -- A and B, and having elements of the new instance be pairs |A| × |B|. -- In mathematics, this would usually be written A × B or A ⊕ B. import Algebra.Construct.DirectProduct -- Flipping the arguments of a binary operation preserves many of its -- algebraic properties. import Algebra.Construct.Flip.Op -- Instances of algebraic structures where the carrier is ⊥. -- In mathematics, this is usually called 0. import Algebra.Construct.Initial -- Definitions of the lexicographic product of two operators. import Algebra.Construct.LexProduct -- Definitions of the lexicographic product of two operators. import Algebra.Construct.LexProduct.Base -- Properties of the inner lexicographic product of two operators. import Algebra.Construct.LexProduct.Inner -- Choosing between elements based on the result of applying a function import Algebra.Construct.LiftedChoice -- Basic definition of an operator that computes the min/max value -- with respect to a total preorder. import Algebra.Construct.NaturalChoice.Base -- The max operator derived from an arbitrary total preorder. import Algebra.Construct.NaturalChoice.Max -- Properties of a max operator derived from a spec over a total -- preorder. import Algebra.Construct.NaturalChoice.MaxOp -- The min operator derived from an arbitrary total preorder. import Algebra.Construct.NaturalChoice.Min -- Properties of min and max operators specified over a total -- preorder. import Algebra.Construct.NaturalChoice.MinMaxOp -- Properties of a min operator derived from a spec over a total -- preorder. import Algebra.Construct.NaturalChoice.MinOp -- For each `IsX` algebraic structure `S`, lift the structure to the -- 'pointwise' function space `A → S`: categorically, this is the -- *power* object in the relevant category of `X` objects and morphisms import Algebra.Construct.Pointwise -- Substituting equalities for binary relations import Algebra.Construct.Subst.Equality -- Instances of algebraic structures where the carrier is ⊤. In -- mathematics, this is usually called 0 (1 in the case of Monoid, Group). import Algebra.Construct.Terminal -- Instances of algebraic structures where the carrier is ⊤. In -- mathematics, this is usually called 0 (1 in the case of Monoid, Group). import Algebra.Construct.Zero -- Properties of functions, such as associativity and commutativity import Algebra.Definitions -- Basic auxiliary definitions for magma-like structures import Algebra.Definitions.RawMagma -- Basic auxiliary definitions for monoid-like structures import Algebra.Definitions.RawMonoid -- Basic auxiliary definitions for semiring-like structures import Algebra.Definitions.RawSemiring -- Definitions of algebraic structures like semilattices and lattices -- (packed in records together with sets, operations, etc.), defined via -- meet/join operations and their properties import Algebra.Lattice -- Definitions of algebraic structures like semilattices and lattices -- (packed in records together with sets, operations, etc.), defined via -- meet/join operations and their properties import Algebra.Lattice.Bundles -- Definitions of 'raw' bundles import Algebra.Lattice.Bundles.Raw -- Instances of algebraic structures made by taking two other instances -- A and B, and having elements of the new instance be pairs |A| × |B|. -- In mathematics, this would usually be written A × B or A ⊕ B. import Algebra.Lattice.Construct.DirectProduct -- Choosing between elements based on the result of applying a function import Algebra.Lattice.Construct.LiftedChoice -- Properties of a max operator derived from a spec over a total -- preorder. import Algebra.Lattice.Construct.NaturalChoice.MaxOp -- Properties of min and max operators specified over a total preorder. import Algebra.Lattice.Construct.NaturalChoice.MinMaxOp -- Properties of a min operator derived from a spec over a total -- preorder. import Algebra.Lattice.Construct.NaturalChoice.MinOp -- Substituting equalities for binary relations import Algebra.Lattice.Construct.Subst.Equality -- Instances of algebraic lattice structures where the carrier is ⊤. -- In mathematics, this is usually called 0. import Algebra.Lattice.Construct.Zero -- Morphisms between algebraic lattice structures import Algebra.Lattice.Morphism -- The composition of morphisms between algebraic lattice structures. import Algebra.Lattice.Morphism.Construct.Composition -- The identity morphism for algebraic lattice structures import Algebra.Lattice.Morphism.Construct.Identity -- Consequences of a monomorphism between lattice-like structures import Algebra.Lattice.Morphism.LatticeMonomorphism -- Morphisms between algebraic lattice structures import Algebra.Lattice.Morphism.Structures -- Some derivable properties of Boolean algebras import Algebra.Lattice.Properties.BooleanAlgebra -- Boolean algebra expressions import Algebra.Lattice.Properties.BooleanAlgebra.Expression -- Some derivable properties import Algebra.Lattice.Properties.DistributiveLattice -- Some derivable properties of lattices import Algebra.Lattice.Properties.Lattice -- Some derivable properties of semilattices import Algebra.Lattice.Properties.Semilattice -- Some lattice-like structures defined by properties of _∧_ and _∨_ -- (not packed up with sets, operations, etc.) import Algebra.Lattice.Structures -- Some biased records for lattice-like structures. Such records are -- often easier to construct, but are suboptimal to use more widely and -- should be converted to the standard record definitions immediately -- using the provided conversion functions. import Algebra.Lattice.Structures.Biased -- Definitions of algebraic structure module -- packed in records together with sets, operations, etc. import Algebra.Module -- Definitions of algebraic structures defined over some other -- structure, like modules and vector spaces import Algebra.Module.Bundles -- Definitions of 'raw' bundles for module-like algebraic structures import Algebra.Module.Bundles.Raw -- Relations between properties of scaling and other operations import Algebra.Module.Consequences -- This module constructs the biproduct of two R-modules, and similar -- for weaker module-like structures. -- The intended universal property is that the biproduct is both a -- product and a coproduct in the category of R-modules. import Algebra.Module.Construct.DirectProduct -- The non-commutative analogue of Nagata's construction of -- the "idealization of a module", (Local Rings, 1962; Wiley) -- defined here on R-R-*bi*modules M over a ring R, as used in -- "Forward- or reverse-mode automatic differentiation: What's the difference?" -- (Van den Berg, Schrijvers, McKinna, Vandenbroucke; -- Science of Computer Programming, Vol. 234, January 2024 -- https://doi.org/10.1016/j.scico.2023.103010) import Algebra.Module.Construct.Idealization -- This module constructs the unit of the monoidal structure on -- R-modules, and similar for weaker module-like structures. -- The intended universal property is that the maps out of the tensor -- unit into M are isomorphic to the elements of M. import Algebra.Module.Construct.TensorUnit -- This module constructs the zero R-module, and similar for weaker -- module-like structures. -- The intended universal property is that, given any R-module M, there -- is a unique map into and a unique map out of the zero R-module -- from/to M. import Algebra.Module.Construct.Zero -- This module collects the property definitions for left-scaling -- (LeftDefs), right-scaling (RightDefs), and both (BiDefs). import Algebra.Module.Definitions -- Properties connecting left-scaling and right-scaling import Algebra.Module.Definitions.Bi -- Properties connecting left-scaling and right-scaling over the same scalars import Algebra.Module.Definitions.Bi.Simultaneous -- Properties of left-scaling import Algebra.Module.Definitions.Left -- Properties of right-scaling import Algebra.Module.Definitions.Right -- The composition of morphisms between module-like algebraic structures. import Algebra.Module.Morphism.Construct.Composition -- The identity morphism for module-like algebraic structures import Algebra.Module.Morphism.Construct.Identity -- Basic definitions for morphisms between module-like algebraic -- structures import Algebra.Module.Morphism.Definitions -- Properties of linear maps. import Algebra.Module.Morphism.ModuleHomomorphism -- Morphisms between module-like algebraic structures import Algebra.Module.Morphism.Structures -- Properties of modules. import Algebra.Module.Properties -- Properties of semimodules. import Algebra.Module.Properties.Semimodule -- Some algebraic structures defined over some other structure import Algebra.Module.Structures -- This module provides alternative ways of providing instances of -- structures in the Algebra.Module hierarchy. import Algebra.Module.Structures.Biased -- Morphisms between algebraic structures import Algebra.Morphism -- Some properties of Magma homomorphisms import Algebra.Morphism.Consequences -- The composition of morphisms between algebraic structures. import Algebra.Morphism.Construct.Composition -- The identity morphism for algebraic structures import Algebra.Morphism.Construct.Identity -- The unique morphism from the initial object, -- for each of the relevant categories. Since -- `Semigroup` and `Band` are simply `Magma`s -- satisfying additional properties, it suffices to -- define the morphism on the underlying `RawMagma`. import Algebra.Morphism.Construct.Initial -- The unique morphism to the terminal object, -- for each of the relevant categories. Since -- each terminal algebra builds on `Monoid`, -- possibly with additional (trivial) operations, -- satisfying additional properties, it suffices to -- define the morphism on the underlying `RawMonoid` import Algebra.Morphism.Construct.Terminal -- Basic definitions for morphisms between algebraic structures import Algebra.Morphism.Definitions -- Consequences of a monomorphism between group-like structures import Algebra.Morphism.GroupMonomorphism -- Consequences of a monomorphism between magma-like structures import Algebra.Morphism.MagmaMonomorphism -- Consequences of a monomorphism between monoid-like structures import Algebra.Morphism.MonoidMonomorphism -- Consequences of a monomorphism between ring-like structures import Algebra.Morphism.RingMonomorphism -- Morphisms between algebraic structures import Algebra.Morphism.Structures -- Some derivable properties import Algebra.Properties.AbelianGroup -- Some properties of operations in CancellativeCommutativeSemiring. import Algebra.Properties.CancellativeCommutativeSemiring -- Properties of divisibility over commutative magmas import Algebra.Properties.CommutativeMagma.Divisibility -- Some derivable properties import Algebra.Properties.CommutativeMonoid -- Multiplication over a monoid (i.e. repeated addition) import Algebra.Properties.CommutativeMonoid.Mult -- Multiplication over a monoid (i.e. repeated addition) optimised for -- type checking. import Algebra.Properties.CommutativeMonoid.Mult.TCOptimised -- Finite summations over a commutative monoid import Algebra.Properties.CommutativeMonoid.Sum -- Some theory for commutative semigroup import Algebra.Properties.CommutativeSemigroup -- Properties of divisibility over commutative semigroups import Algebra.Properties.CommutativeSemigroup.Divisibility -- The Binomial Theorem for Commutative Semirings import Algebra.Properties.CommutativeSemiring.Binomial -- Exponentiation defined over a commutative semiring as repeated multiplication import Algebra.Properties.CommutativeSemiring.Exp -- Exponentiation over a semiring optimised for type-checking. import Algebra.Properties.CommutativeSemiring.Exp.TCOptimised -- Some derivable properties import Algebra.Properties.Group -- Some derivable properties import Algebra.Properties.IdempotentCommutativeMonoid -- Some derivable properties import Algebra.Properties.KleeneAlgebra -- Some basic properties of Loop import Algebra.Properties.Loop -- Divisibility over magmas import Algebra.Properties.Magma.Divisibility -- Some basic properties of Quasigroup import Algebra.Properties.MiddleBolLoop -- Properties of divisibility over monoids import Algebra.Properties.Monoid.Divisibility -- Multiplication over a monoid (i.e. repeated addition) import Algebra.Properties.Monoid.Mult -- Multiplication over a monoid (i.e. repeated addition) optimised for -- type checking. import Algebra.Properties.Monoid.Mult.TCOptimised -- Finite summations over a monoid import Algebra.Properties.Monoid.Sum -- Some derivable properties import Algebra.Properties.MoufangLoop -- Some basic properties of Quasigroup import Algebra.Properties.Quasigroup -- Some basic properties of Rings import Algebra.Properties.Ring -- Some basic properties of RingWithoutOne import Algebra.Properties.RingWithoutOne -- Some theory for Semigroup import Algebra.Properties.Semigroup -- Properties of divisibility over semigroups import Algebra.Properties.Semigroup.Divisibility -- The Binomial Theorem for *-commuting elements in a Semiring import Algebra.Properties.Semiring.Binomial -- Properties of divisibility over semirings import Algebra.Properties.Semiring.Divisibility -- Exponentiation defined over a semiring as repeated multiplication import Algebra.Properties.Semiring.Exp -- Exponentiation over a semiring optimised for type-checking. import Algebra.Properties.Semiring.Exp.TCOptimised -- Exponentiation over a semiring optimised for tail-recursion. import Algebra.Properties.Semiring.Exp.TailRecursiveOptimised -- Multiplication by a natural number over a semiring import Algebra.Properties.Semiring.Mult -- Multiplication over a semiring optimised for type-checking. import Algebra.Properties.Semiring.Mult.TCOptimised -- Some theory for CancellativeCommutativeSemiring. import Algebra.Properties.Semiring.Primality -- Finite summations over a semiring import Algebra.Properties.Semiring.Sum -- Solver for equations in commutative monoids import Algebra.Solver.CommutativeMonoid -- An example of how Algebra.CommutativeMonoidSolver can be used import Algebra.Solver.CommutativeMonoid.Example -- Normal forms in commutative monoids import Algebra.Solver.CommutativeMonoid.Normal -- Solver for equations in idempotent commutative monoids import Algebra.Solver.IdempotentCommutativeMonoid -- An example of how Algebra.IdempotentCommutativeMonoidSolver can be -- used import Algebra.Solver.IdempotentCommutativeMonoid.Example -- Solver for equations in idempotent commutative monoids import Algebra.Solver.IdempotentCommutativeMonoid.Normal -- A solver for equations over monoids import Algebra.Solver.Monoid -- A solver for equations over monoids import Algebra.Solver.Monoid.Expression -- A solver for equations over monoids import Algebra.Solver.Monoid.Normal -- A solver for equations over monoids import Algebra.Solver.Monoid.Solver -- Old solver for commutative ring or semiring equalities import Algebra.Solver.Ring -- Commutative semirings with some additional structure ("almost" -- commutative rings), used by the ring solver import Algebra.Solver.Ring.AlmostCommutativeRing -- Some boring lemmas used by the ring solver import Algebra.Solver.Ring.Lemmas -- Instantiates the ring solver, using the natural numbers as the -- coefficient "ring" import Algebra.Solver.Ring.NaturalCoefficients -- Instantiates the natural coefficients ring solver, using coefficient -- equality induced by ℕ. import Algebra.Solver.Ring.NaturalCoefficients.Default -- Instantiates the ring solver with two copies of the same ring with -- decidable equality import Algebra.Solver.Ring.Simple -- Some algebraic structures (not packed up with sets, operations, etc.) import Algebra.Structures -- Ways to give instances of certain structures where some fields can -- be given in terms of others. Re-exported via `Algebra`. import Algebra.Structures.Biased -- Results concerning double negation elimination. import Axiom.DoubleNegationElimination -- Results concerning the excluded middle axiom. import Axiom.ExcludedMiddle -- Results concerning function extensionality for propositional equality import Axiom.Extensionality.Heterogeneous -- Results concerning function extensionality for propositional equality import Axiom.Extensionality.Propositional -- Results concerning uniqueness of identity proofs import Axiom.UniquenessOfIdentityProofs -- Results concerning uniqueness of identity proofs, with axiom K import Axiom.UniquenessOfIdentityProofs.WithK -- M-types (the dual of W-types) import Codata.Guarded.M -- Infinite streams defined as coinductive records import Codata.Guarded.Stream -- Properties of infinite streams defined as coinductive records import Codata.Guarded.Stream.Properties -- Coinductive pointwise lifting of relations to streams import Codata.Guarded.Stream.Relation.Binary.Pointwise -- Streams where all elements satisfy a given property import Codata.Guarded.Stream.Relation.Unary.All -- Streams where at least one element satisfies a given property import Codata.Guarded.Stream.Relation.Unary.Any -- "Finite" sets indexed on coinductive "natural" numbers import Codata.Musical.Cofin -- Coinductive "natural" numbers import Codata.Musical.Conat -- Coinductive "natural" numbers: base type and operations import Codata.Musical.Conat.Base -- M-types (the dual of W-types) import Codata.Musical.M -- Indexed M-types (the dual of indexed W-types aka Petersson-Synek -- trees). import Codata.Musical.M.Indexed -- Basic types related to coinduction import Codata.Musical.Notation -- Booleans import Data.Bool -- The type for booleans and some operations import Data.Bool.Base -- Instances for booleans import Data.Bool.Instances -- A bunch of properties import Data.Bool.Properties -- Showing booleans import Data.Bool.Show -- Automatic solvers for equations over booleans import Data.Bool.Solver -- Characters import Data.Char -- Basic definitions for Characters import Data.Char.Base -- Instances for characters import Data.Char.Instances -- Properties of operations on characters import Data.Char.Properties -- Containers, based on the work of Abbott and others import Data.Container -- Container combinators import Data.Container.Combinator -- Correctness proofs for container combinators import Data.Container.Combinator.Properties -- Fixpoints for containers - using guardedness import Data.Container.Fixpoints.Guarded -- The free monad construction on containers import Data.Container.FreeMonad -- Indexed containers aka interaction structures aka polynomial -- functors. The notation and presentation here is closest to that of -- Hancock and Hyvernat in "Programming interfaces and basic topology" -- (2006/9). import Data.Container.Indexed -- Indexed container combinators import Data.Container.Indexed.Combinator -- Greatest fixpoint for indexed containers - using guardedness import Data.Container.Indexed.Fixpoints.Guarded -- The free monad construction on indexed containers import Data.Container.Indexed.FreeMonad -- Equality over indexed container extensions parametrised by a setoid import Data.Container.Indexed.Relation.Binary.Equality.Setoid -- Pointwise equality for indexed containers import Data.Container.Indexed.Relation.Binary.Pointwise -- Properties of pointwise equality for indexed containers import Data.Container.Indexed.Relation.Binary.Pointwise.Properties -- Some code related to indexed containers that uses heterogeneous -- equality import Data.Container.Indexed.WithK -- Membership for containers import Data.Container.Membership -- Container Morphisms import Data.Container.Morphism -- Propertiers of any for containers import Data.Container.Morphism.Properties -- Properties of operations on containers import Data.Container.Properties -- Several kinds of "relatedness" for containers such as equivalences, -- surjections and bijections import Data.Container.Related -- Equality over container extensions parametrised by some setoid import Data.Container.Relation.Binary.Equality.Setoid -- Pointwise equality for containers import Data.Container.Relation.Binary.Pointwise -- Properties of pointwise equality for containers import Data.Container.Relation.Binary.Pointwise.Properties -- All (□) for containers import Data.Container.Relation.Unary.All -- Any (◇) for containers import Data.Container.Relation.Unary.Any -- Propertiers of any for containers import Data.Container.Relation.Unary.Any.Properties -- A way to specify that a function's argument takes a default value -- if the argument is not passed explicitly. import Data.Default -- Lists with fast append import Data.DifferenceList -- Natural numbers with fast addition (for use together with -- DifferenceVec) import Data.DifferenceNat -- Vectors with fast append import Data.DifferenceVec -- Digits and digit expansions import Data.Digit -- Properties of digits and digit expansions import Data.Digit.Properties -- Empty type, judgementally proof irrelevant, Level-monomorphic import Data.Empty -- An irrelevant version of ⊥-elim import Data.Empty.Irrelevant -- Level polymorphic Empty type import Data.Empty.Polymorphic -- Finite sets import Data.Fin -- Finite sets import Data.Fin.Base -- Induction over Fin import Data.Fin.Induction -- Instances for finite sets import Data.Fin.Instances -- Fin Literals import Data.Fin.Literals -- Patterns for Fin import Data.Fin.Patterns -- Bijections on finite sets (i.e. permutations). import Data.Fin.Permutation -- Component functions of permutations found in `Data.Fin.Permutation` import Data.Fin.Permutation.Components -- Decomposition of permutations into a list of transpositions. import Data.Fin.Permutation.Transposition.List -- Properties related to Fin, and operations making use of these -- properties (or other properties not available in Data.Fin) import Data.Fin.Properties -- Reflection utilities for Fin import Data.Fin.Reflection -- The 'top' view of Fin. import Data.Fin.Relation.Unary.Top -- Showing finite numbers import Data.Fin.Show -- Subsets of finite sets import Data.Fin.Subset -- Induction over Subset import Data.Fin.Subset.Induction -- Some properties about subsets import Data.Fin.Subset.Properties -- Substitutions import Data.Fin.Substitution -- Substitution lemmas import Data.Fin.Substitution.Lemmas -- Application of substitutions to lists, along with various lemmas import Data.Fin.Substitution.List -- Floating point numbers import Data.Float -- Floats: basic types and operations import Data.Float.Base -- Instances for floating point numbers import Data.Float.Instances -- Properties of operations on floats import Data.Float.Properties -- Directed acyclic multigraphs import Data.Graph.Acyclic -- Integers import Data.Integer -- Integers, basic types and operations import Data.Integer.Base -- Coprimality import Data.Integer.Coprimality -- Integer division import Data.Integer.DivMod -- Unsigned divisibility import Data.Integer.Divisibility -- Alternative definition of divisibility without using modulus. import Data.Integer.Divisibility.Signed -- Greatest Common Divisor for integers import Data.Integer.GCD -- Instances for integers import Data.Integer.Instances -- Least Common Multiple for integers import Data.Integer.LCM -- Integer Literals import Data.Integer.Literals -- Some properties about integers import Data.Integer.Properties -- Some extra lemmas about natural numbers only needed for -- Data.Integer.Properties (for distributivity) import Data.Integer.Properties.NatLemmas -- Showing integers import Data.Integer.Show -- Automatic solvers for equations over integers import Data.Integer.Solver -- Automatic solvers for equations over integers import Data.Integer.Tactic.RingSolver -- Wrapper for the proof irrelevance modality import Data.Irrelevant -- Lists import Data.List -- Lists, basic types and operations import Data.List.Base -- A data structure which keeps track of an upper bound on the number -- of elements /not/ in a given list import Data.List.Countdown -- An effectful view of List import Data.List.Effectful -- An effectful view of List import Data.List.Effectful.Transformer -- Finding the maximum/minimum values in a list import Data.List.Extrema -- Finding the maximum/minimum values in a list, specialised for Nat import Data.List.Extrema.Nat -- Fresh lists, a proof relevant variant of Catarina Coquand's contexts -- in "A Formalised Proof of the Soundness and Completeness of a Simply -- Typed Lambda-Calculus with Explicit Substitutions" import Data.List.Fresh -- Membership predicate for fresh lists import Data.List.Fresh.Membership.Setoid -- Properties of the membership predicate for fresh lists import Data.List.Fresh.Membership.Setoid.Properties -- A non-empty fresh list import Data.List.Fresh.NonEmpty -- Properties of fresh lists and functions acting on them import Data.List.Fresh.Properties -- All predicate transformer for fresh lists import Data.List.Fresh.Relation.Unary.All -- Properties of All predicate transformer for fresh lists import Data.List.Fresh.Relation.Unary.All.Properties -- Any predicate transformer for fresh lists import Data.List.Fresh.Relation.Unary.Any -- Properties of Any predicate transformer for fresh lists import Data.List.Fresh.Relation.Unary.Any.Properties -- Typeclass instances for List import Data.List.Instances -- An alternative definition of mutually-defined lists and non-empty -- lists, using the Kleene star and plus. import Data.List.Kleene -- A different interface to the Kleene lists, designed to mimic -- Data.List. import Data.List.Kleene.AsList -- Lists, based on the Kleene star and plus, basic types and operations. import Data.List.Kleene.Base -- List Literals import Data.List.Literals -- Decidable propositional membership over lists import Data.List.Membership.DecPropositional -- Decidable setoid membership over lists import Data.List.Membership.DecSetoid -- Data.List.Any.Membership instantiated with propositional equality, -- along with some additional definitions. import Data.List.Membership.Propositional -- Properties related to propositional list membership import Data.List.Membership.Propositional.Properties -- Properties related to propositional list membership, that rely on -- the K rule import Data.List.Membership.Propositional.Properties.WithK -- List membership and some related definitions import Data.List.Membership.Setoid -- Properties related to setoid list membership import Data.List.Membership.Setoid.Properties -- Nondependent N-ary functions manipulating lists import Data.List.Nary.NonDependent -- Non-empty lists import Data.List.NonEmpty -- Non-empty lists: base type and operations import Data.List.NonEmpty.Base -- An effectful view of List⁺ import Data.List.NonEmpty.Effectful -- An effectful view of List import Data.List.NonEmpty.Effectful.Transformer -- Typeclass instances for List⁺ import Data.List.NonEmpty.Instances -- Properties of non-empty lists import Data.List.NonEmpty.Properties -- Non-empty lists where all elements satisfy a given property import Data.List.NonEmpty.Relation.Unary.All -- List-related properties import Data.List.Properties -- Reflection utilities for List import Data.List.Reflection -- Bag and set equality import Data.List.Relation.Binary.BagAndSetEquality -- Decidability of the disjoint relation over propositional equality. import Data.List.Relation.Binary.Disjoint.DecPropositional -- Decidability of the disjoint relation over setoid equality. import Data.List.Relation.Binary.Disjoint.DecSetoid -- Pairs of lists that share no common elements (propositional equality) import Data.List.Relation.Binary.Disjoint.Propositional -- Properties of disjoint lists (propositional equality) import Data.List.Relation.Binary.Disjoint.Propositional.Properties -- Pairs of lists that share no common elements (setoid equality) import Data.List.Relation.Binary.Disjoint.Setoid -- Properties of disjoint lists (setoid equality) import Data.List.Relation.Binary.Disjoint.Setoid.Properties -- Decidable pointwise equality over lists using propositional equality import Data.List.Relation.Binary.Equality.DecPropositional -- Pointwise decidable equality over lists parameterised by a setoid import Data.List.Relation.Binary.Equality.DecSetoid -- Pointwise equality over lists using propositional equality import Data.List.Relation.Binary.Equality.Propositional -- Pointwise equality over lists parameterised by a setoid import Data.List.Relation.Binary.Equality.Setoid -- Properties of List modulo ≋ import Data.List.Relation.Binary.Equality.Setoid.Properties -- An inductive definition of the heterogeneous infix relation import Data.List.Relation.Binary.Infix.Heterogeneous -- Properties of the heterogeneous infix relation import Data.List.Relation.Binary.Infix.Heterogeneous.Properties -- Properties of the homogeneous infix relation import Data.List.Relation.Binary.Infix.Homogeneous.Properties -- Lexicographic ordering of lists import Data.List.Relation.Binary.Lex -- Lexicographic ordering of lists import Data.List.Relation.Binary.Lex.NonStrict -- Lexicographic ordering of lists import Data.List.Relation.Binary.Lex.Strict -- A definition for the permutation relation using setoid equality import Data.List.Relation.Binary.Permutation.Homogeneous -- An inductive definition for the permutation relation import Data.List.Relation.Binary.Permutation.Propositional -- Properties of permutation import Data.List.Relation.Binary.Permutation.Propositional.Properties -- Properties of permutation (with K) import Data.List.Relation.Binary.Permutation.Propositional.Properties.WithK -- A definition for the permutation relation using setoid equality import Data.List.Relation.Binary.Permutation.Setoid -- Properties of permutations using setoid equality import Data.List.Relation.Binary.Permutation.Setoid.Properties -- Properties of permutations using setoid equality (on Maybe elements) import Data.List.Relation.Binary.Permutation.Setoid.Properties.Maybe -- Pointwise lifting of relations to lists import Data.List.Relation.Binary.Pointwise -- Pointwise lifting of relations to lists import Data.List.Relation.Binary.Pointwise.Base -- Properties of pointwise lifting of relations to lists import Data.List.Relation.Binary.Pointwise.Properties -- An inductive definition of the heterogeneous prefix relation import Data.List.Relation.Binary.Prefix.Heterogeneous -- Properties of the heterogeneous prefix relation import Data.List.Relation.Binary.Prefix.Heterogeneous.Properties -- Properties of the homogeneous prefix relation import Data.List.Relation.Binary.Prefix.Homogeneous.Properties -- An inductive definition of the sublist relation for types which have -- a decidable equality. This is commonly known as Order Preserving -- Embeddings (OPE). import Data.List.Relation.Binary.Sublist.DecPropositional -- A solver for proving that one list is a sublist of the other for -- types which enjoy decidable equalities. import Data.List.Relation.Binary.Sublist.DecPropositional.Solver -- An inductive definition of the sublist relation with respect to a -- setoid which is decidable. This is a generalisation of what is -- commonly known as Order Preserving Embeddings (OPE). import Data.List.Relation.Binary.Sublist.DecSetoid -- A solver for proving that one list is a sublist of the other. import Data.List.Relation.Binary.Sublist.DecSetoid.Solver -- An inductive definition of the heterogeneous sublist relation -- This is a generalisation of what is commonly known as Order -- Preserving Embeddings (OPE). import Data.List.Relation.Binary.Sublist.Heterogeneous -- Properties of the heterogeneous sublist relation import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties -- A solver for proving that one list is a sublist of the other. import Data.List.Relation.Binary.Sublist.Heterogeneous.Solver -- An inductive definition of the sublist relation. This is commonly -- known as Order Preserving Embeddings (OPE). import Data.List.Relation.Binary.Sublist.Propositional -- A larger example for sublists (propositional case): -- Simply-typed lambda terms with globally unique variables -- (both bound and free ones). import Data.List.Relation.Binary.Sublist.Propositional.Example.UniqueBoundVariables -- Sublist-related properties import Data.List.Relation.Binary.Sublist.Propositional.Properties -- Slices in the propositional sublist category. import Data.List.Relation.Binary.Sublist.Propositional.Slice -- An inductive definition of the sublist relation with respect to a -- setoid. This is a generalisation of what is commonly known as Order -- Preserving Embeddings (OPE). import Data.List.Relation.Binary.Sublist.Setoid -- Properties of the setoid sublist relation import Data.List.Relation.Binary.Sublist.Setoid.Properties -- Decidability of the subset relation over propositional equality. import Data.List.Relation.Binary.Subset.DecPropositional -- Decidability of the subset relation over setoid equality. import Data.List.Relation.Binary.Subset.DecSetoid -- The sublist relation over propositional equality. import Data.List.Relation.Binary.Subset.Propositional -- Properties of the sublist relation over setoid equality. import Data.List.Relation.Binary.Subset.Propositional.Properties -- The extensional sublist relation over setoid equality. import Data.List.Relation.Binary.Subset.Setoid -- Properties of the extensional sublist relation over setoid equality. import Data.List.Relation.Binary.Subset.Setoid.Properties -- An inductive definition of the heterogeneous suffix relation import Data.List.Relation.Binary.Suffix.Heterogeneous -- Properties of the heterogeneous suffix relation import Data.List.Relation.Binary.Suffix.Heterogeneous.Properties -- Properties of the homogeneous suffix relation import Data.List.Relation.Binary.Suffix.Homogeneous.Properties -- Generalised view of appending two lists into one. import Data.List.Relation.Ternary.Appending -- Properties of the generalised view of appending two lists import Data.List.Relation.Ternary.Appending.Properties -- Appending of lists using propositional equality import Data.List.Relation.Ternary.Appending.Propositional -- Properties of list appending import Data.List.Relation.Ternary.Appending.Propositional.Properties -- Appending of lists using setoid equality import Data.List.Relation.Ternary.Appending.Setoid -- Properties of list appending import Data.List.Relation.Ternary.Appending.Setoid.Properties -- Generalised notion of interleaving two lists into one in an -- order-preserving manner import Data.List.Relation.Ternary.Interleaving -- Properties of general interleavings import Data.List.Relation.Ternary.Interleaving.Properties -- Interleavings of lists using propositional equality import Data.List.Relation.Ternary.Interleaving.Propositional -- Properties of interleaving using propositional equality import Data.List.Relation.Ternary.Interleaving.Propositional.Properties -- Interleavings of lists using setoid equality import Data.List.Relation.Ternary.Interleaving.Setoid -- Properties of interleaving using setoid equality import Data.List.Relation.Ternary.Interleaving.Setoid.Properties -- Lists where all elements satisfy a given property import Data.List.Relation.Unary.All -- Properties related to All import Data.List.Relation.Unary.All.Properties -- Lists where every pair of elements are related (symmetrically) import Data.List.Relation.Unary.AllPairs -- Properties related to AllPairs import Data.List.Relation.Unary.AllPairs.Properties -- Lists where at least one element satisfies a given property import Data.List.Relation.Unary.Any -- Properties related to Any import Data.List.Relation.Unary.Any.Properties -- Lists which contain every element of a given type import Data.List.Relation.Unary.Enumerates.Setoid -- Properties of lists which contain every element of a given type import Data.List.Relation.Unary.Enumerates.Setoid.Properties -- First generalizes the idea that an element is the first in a list to -- satisfy a predicate. import Data.List.Relation.Unary.First -- Properties of First import Data.List.Relation.Unary.First.Properties -- Property that elements are grouped import Data.List.Relation.Unary.Grouped -- Property related to Grouped import Data.List.Relation.Unary.Grouped.Properties -- Lists where every consecutative pair of elements is related. import Data.List.Relation.Unary.Linked -- Properties related to Linked import Data.List.Relation.Unary.Linked.Properties -- Sorted lists import Data.List.Relation.Unary.Sorted.TotalOrder -- Sorted lists import Data.List.Relation.Unary.Sorted.TotalOrder.Properties -- 'Sufficient' lists: a structurally inductive view of lists xs -- as given by xs ≡ non-empty prefix + sufficient suffix import Data.List.Relation.Unary.Sufficient -- Lists made up entirely of unique elements (setoid equality) import Data.List.Relation.Unary.Unique.DecPropositional -- Properties of lists made up entirely of decidably unique elements import Data.List.Relation.Unary.Unique.DecPropositional.Properties -- Lists made up entirely of unique elements (setoid equality) import Data.List.Relation.Unary.Unique.DecSetoid -- Properties of lists made up entirely of decidably unique elements import Data.List.Relation.Unary.Unique.DecSetoid.Properties -- Lists made up entirely of unique elements (propositional equality) import Data.List.Relation.Unary.Unique.Propositional -- Properties of unique lists (setoid equality) import Data.List.Relation.Unary.Unique.Propositional.Properties -- Lists made up entirely of unique elements (setoid equality) import Data.List.Relation.Unary.Unique.Setoid -- Properties of unique lists (setoid equality) import Data.List.Relation.Unary.Unique.Setoid.Properties -- Reverse view import Data.List.Reverse -- List scans: definitions import Data.List.Scans.Base -- List scans: properties import Data.List.Scans.Properties -- Showing lists import Data.List.Show -- Functions and definitions for sorting lists import Data.List.Sort -- The core definition of a sorting algorithm import Data.List.Sort.Base -- An implementation of merge sort along with proofs of correctness. import Data.List.Sort.MergeSort -- List Zippers, basic types and operations import Data.List.Zipper -- List Zipper-related properties import Data.List.Zipper.Properties -- The Maybe type import Data.Maybe -- The Maybe type and some operations import Data.Maybe.Base -- An effectful view of Maybe import Data.Maybe.Effectful -- An effectful view of Maybe import Data.Maybe.Effectful.Transformer -- Typeclass instances for Maybe import Data.Maybe.Instances -- Maybe-related properties import Data.Maybe.Properties -- Lifting a relation such that `nothing` is also related to `just` import Data.Maybe.Relation.Binary.Connected -- Pointwise lifting of relations to maybes import Data.Maybe.Relation.Binary.Pointwise -- Maybes where all the elements satisfy a given property import Data.Maybe.Relation.Unary.All -- Properties related to All import Data.Maybe.Relation.Unary.All.Properties -- Maybes where one of the elements satisfies a given property import Data.Maybe.Relation.Unary.Any -- Natural numbers import Data.Nat -- Natural numbers, basic types and operations import Data.Nat.Base -- Natural numbers represented in binary natively in Agda. import Data.Nat.Binary -- Natural numbers represented in binary. import Data.Nat.Binary.Base -- Induction over _<_ for ℕᵇ. import Data.Nat.Binary.Induction -- Instances for binary natural numbers import Data.Nat.Binary.Instances -- Basic properties of ℕᵇ import Data.Nat.Binary.Properties -- Subtraction on Bin and some of its properties. import Data.Nat.Binary.Subtraction -- Combinatorial operations import Data.Nat.Combinatorics -- Combinatorics operations import Data.Nat.Combinatorics.Base -- The specification for combinatorics operations import Data.Nat.Combinatorics.Specification -- Coprimality import Data.Nat.Coprimality -- Natural number division import Data.Nat.DivMod -- More efficient mod and divMod operations (require the K axiom) import Data.Nat.DivMod.WithK -- Divisibility import Data.Nat.Divisibility -- Greatest common divisor import Data.Nat.GCD -- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality import Data.Nat.GCD.Lemmas -- A generalisation of the arithmetic operations import Data.Nat.GeneralisedArithmetic -- Various forms of induction for natural numbers import Data.Nat.Induction -- Definition of and lemmas related to "true infinitely often" import Data.Nat.InfinitelyOften -- Instances for natural numbers import Data.Nat.Instances -- Least common multiple import Data.Nat.LCM -- Natural Literals import Data.Nat.Literals -- Logarithm base 2 and respective properties import Data.Nat.Logarithm -- Primality import Data.Nat.Primality -- Prime factorisation of natural numbers and its properties import Data.Nat.Primality.Factorisation -- A bunch of properties about natural number operations import Data.Nat.Properties -- Linear congruential pseudo random generators for natural numbers -- /!\ NB: LCGs must not be used for cryptographic applications import Data.Nat.PseudoRandom.LCG -- Reflection utilities for ℕ import Data.Nat.Reflection -- Showing natural numbers import Data.Nat.Show -- Properties of showing natural numbers import Data.Nat.Show.Properties -- Automatic solvers for equations over naturals import Data.Nat.Solver -- Automatic solvers for equations over naturals import Data.Nat.Tactic.RingSolver -- Natural number types and operations requiring the axiom K. import Data.Nat.WithK -- Parity import Data.Parity -- Parity import Data.Parity.Base -- Instances for parities import Data.Parity.Instances -- Some properties about parities import Data.Parity.Properties -- Products import Data.Product -- Algebraic properties of products import Data.Product.Algebra -- Products import Data.Product.Base -- Universe-sensitive functor and monad instances for the Product type. import Data.Product.Effectful.Examples -- Left-biased universe-sensitive functor and monad instances for the -- Product type. import Data.Product.Effectful.Left -- Base definitions for the left-biased universe-sensitive functor and -- monad instances for the Product type. import Data.Product.Effectful.Left.Base -- Right-biased universe-sensitive functor and monad instances for the -- Product type. import Data.Product.Effectful.Right -- Base definitions for the right-biased universe-sensitive functor -- and monad instances for the Product type. import Data.Product.Effectful.Right.Base -- Dependent product combinators for propositional equality -- preserving functions import Data.Product.Function.Dependent.Propositional -- Dependent product combinators for propositional equality -- preserving functions import Data.Product.Function.Dependent.Propositional.WithK -- Dependent product combinators for setoid equality preserving -- functions. import Data.Product.Function.Dependent.Setoid -- Non-dependent product combinators for propositional equality -- preserving functions import Data.Product.Function.NonDependent.Propositional -- Non-dependent product combinators for setoid equality preserving -- functions import Data.Product.Function.NonDependent.Setoid -- Typeclass instances for products import Data.Product.Instances -- Nondependent heterogeneous N-ary products import Data.Product.Nary.NonDependent -- Properties of products import Data.Product.Properties -- Properties of 'very dependent' map / zipWith over products import Data.Product.Properties.Dependent -- Properties, related to products, that rely on the K rule import Data.Product.Properties.WithK -- Lexicographic products of binary relations import Data.Product.Relation.Binary.Lex.NonStrict -- Lexicographic products of binary relations import Data.Product.Relation.Binary.Lex.Strict -- Pointwise lifting of binary relations to sigma types import Data.Product.Relation.Binary.Pointwise.Dependent -- Properties that are related to pointwise lifting of binary -- relations to sigma types and make use of heterogeneous equality import Data.Product.Relation.Binary.Pointwise.Dependent.WithK -- Pointwise products of binary relations import Data.Product.Relation.Binary.Pointwise.NonDependent -- Lifting of two predicates import Data.Product.Relation.Unary.All -- Rational numbers import Data.Rational -- Rational numbers import Data.Rational.Base -- Instances for rational numbers import Data.Rational.Instances -- Rational Literals import Data.Rational.Literals -- Properties of Rational numbers import Data.Rational.Properties -- Showing rational numbers import Data.Rational.Show -- Automatic solvers for equations over rationals import Data.Rational.Solver -- Rational numbers in non-reduced form. import Data.Rational.Unnormalised -- Rational numbers in non-reduced form. import Data.Rational.Unnormalised.Base -- Properties of unnormalized Rational numbers import Data.Rational.Unnormalised.Properties -- Showing unnormalised rational numbers import Data.Rational.Unnormalised.Show -- Automatic solvers for equations over rationals import Data.Rational.Unnormalised.Solver -- Record types with manifest fields and "with", based on Randy -- Pollack's "Dependently Typed Records in Type Theory" import Data.Record -- Refinement type: a value together with a proof irrelevant witness. import Data.Refinement -- Refinement type: a value together with a proof irrelevant witness. import Data.Refinement.Base -- Properties of refinement types import Data.Refinement.Properties -- Predicate lifting for refinement types import Data.Refinement.Relation.Unary.All -- Signs import Data.Sign -- Signs import Data.Sign.Base -- Instances for signs import Data.Sign.Instances -- Some properties about signs import Data.Sign.Properties -- Bounded vectors (inefficient implementation) import Data.Star.BoundedVec -- Decorated star-lists import Data.Star.Decoration -- Environments (heterogeneous collections) import Data.Star.Environment -- Finite sets defined using the reflexive-transitive closure, Star import Data.Star.Fin -- Lists defined in terms of the reflexive-transitive closure, Star import Data.Star.List -- Natural numbers defined using the reflexive-transitive closure, Star import Data.Star.Nat -- Pointers into star-lists import Data.Star.Pointer -- Vectors defined in terms of the reflexive-transitive closure, Star import Data.Star.Vec -- Strings import Data.String -- Strings: builtin type and basic operations import Data.String.Base -- Instances for strings import Data.String.Instances -- String Literals import Data.String.Literals -- Properties of operations on strings import Data.String.Properties -- Sums (disjoint unions) import Data.Sum -- Algebraic properties of sums (disjoint unions) import Data.Sum.Algebra -- Sums (disjoint unions) import Data.Sum.Base -- Usage examples of the effectful view of the Sum type import Data.Sum.Effectful.Examples -- An effectful view of the Sum type (Left-biased) import Data.Sum.Effectful.Left -- An effectful view of the Sum type (Left-biased) import Data.Sum.Effectful.Left.Transformer -- An effectful view of the Sum type (Right-biased) import Data.Sum.Effectful.Right -- An effectful view of the Sum type (Right-biased) import Data.Sum.Effectful.Right.Transformer -- Sum combinators for propositional equality preserving functions import Data.Sum.Function.Propositional -- Sum combinators for setoid equality preserving functions import Data.Sum.Function.Setoid -- Typeclass instances for sums import Data.Sum.Instances -- Properties of sums (disjoint unions) import Data.Sum.Properties -- Sums of binary relations import Data.Sum.Relation.Binary.LeftOrder -- Pointwise sum import Data.Sum.Relation.Binary.Pointwise -- Heterogeneous `All` predicate for disjoint sums import Data.Sum.Relation.Unary.All -- An either-or-both data type import Data.These -- An either-or-both data type, basic type and operations import Data.These.Base -- Left-biased universe-sensitive functor and monad instances for These. import Data.These.Effectful.Left -- Base definitions for the left-biased universe-sensitive functor and -- monad instances for These. import Data.These.Effectful.Left.Base -- Right-biased universe-sensitive functor and monad instances for These. import Data.These.Effectful.Right -- Base definitions for the right-biased universe-sensitive functor and -- monad instances for These. import Data.These.Effectful.Right.Base -- Typeclass instances for These import Data.These.Instances -- Properties of These import Data.These.Properties -- AVL trees import Data.Tree.AVL -- Types and functions which are used to keep track of height -- invariants in AVL Trees import Data.Tree.AVL.Height -- AVL trees where the stored values may depend on their key import Data.Tree.AVL.Indexed -- AVL trees whose elements satisfy a given property import Data.Tree.AVL.Indexed.Relation.Unary.All -- AVL trees where at least one element satisfies a given property import Data.Tree.AVL.Indexed.Relation.Unary.Any -- Properties related to Any import Data.Tree.AVL.Indexed.Relation.Unary.Any.Properties -- Some code related to indexed AVL trees that relies on the K rule import Data.Tree.AVL.Indexed.WithK -- Finite maps with indexed keys and values, based on AVL trees import Data.Tree.AVL.IndexedMap -- Keys for AVL trees -- the original key type extended with a new -- minimum and maximum. import Data.Tree.AVL.Key -- Maps from keys to values, based on AVL trees -- This modules provides a simpler map interface, without a dependency -- between the key and value types. import Data.Tree.AVL.Map -- Membership relation for AVL Maps identifying values up to -- propositional equality. import Data.Tree.AVL.Map.Membership.Propositional -- Properties of the membership relation for AVL Maps identifying values -- up to propositional equality. import Data.Tree.AVL.Map.Membership.Propositional.Properties -- AVL trees where at least one element satisfies a given property import Data.Tree.AVL.Map.Relation.Unary.Any -- Non-empty AVL trees import Data.Tree.AVL.NonEmpty -- Non-empty AVL trees, where equality for keys is propositional equality import Data.Tree.AVL.NonEmpty.Propositional -- AVL trees where at least one element satisfies a given property import Data.Tree.AVL.Relation.Unary.Any -- Finite sets, based on AVL trees import Data.Tree.AVL.Sets -- Membership relation for AVL sets import Data.Tree.AVL.Sets.Membership -- Properties of membership for AVL sets import Data.Tree.AVL.Sets.Membership.Properties -- Values for AVL trees -- Values must respect the underlying equivalence on keys import Data.Tree.AVL.Value -- Binary Trees import Data.Tree.Binary -- Properties of binary trees import Data.Tree.Binary.Properties -- Pointwise lifting of a predicate to a binary tree import Data.Tree.Binary.Relation.Unary.All -- Properties of the pointwise lifting of a predicate to a binary tree import Data.Tree.Binary.Relation.Unary.All.Properties -- Zippers for Binary Trees import Data.Tree.Binary.Zipper -- Tree Zipper-related properties import Data.Tree.Binary.Zipper.Properties -- The unit type, Level-monomorphic version import Data.Unit -- The unit type and the total relation on unit import Data.Unit.Base -- Instances for the unit type import Data.Unit.Instances -- Some unit types import Data.Unit.NonEta -- The universe polymorphic unit type and the total relation on unit import Data.Unit.Polymorphic -- A universe polymorphic unit type, as a Lift of the Level 0 one. import Data.Unit.Polymorphic.Base -- Instances for the polymorphic unit type import Data.Unit.Polymorphic.Instances -- Properties of the polymorphic unit type -- Defines Decidable Equality and Decidable Ordering as well import Data.Unit.Polymorphic.Properties -- Properties of the unit type import Data.Unit.Properties -- Universes import Data.Universe -- Indexed universes import Data.Universe.Indexed -- Vectors import Data.Vec -- Vectors, basic types and operations import Data.Vec.Base -- Bounded vectors import Data.Vec.Bounded -- Bounded vectors, basic types and operations import Data.Vec.Bounded.Base -- Showing bounded vectors import Data.Vec.Bounded.Show -- An effectful view of Vec import Data.Vec.Effectful -- An effectful view of Vec import Data.Vec.Effectful.Transformer -- Vectors defined as functions from a finite set to a type. import Data.Vec.Functional -- Some Vector-related properties import Data.Vec.Functional.Properties -- Pointwise lifting of relations over Vector import Data.Vec.Functional.Relation.Binary.Equality.Setoid -- Permutation relations over Vector import Data.Vec.Functional.Relation.Binary.Permutation -- Properties of permutation import Data.Vec.Functional.Relation.Binary.Permutation.Properties -- Pointwise lifting of relations over Vector import Data.Vec.Functional.Relation.Binary.Pointwise -- Properties related to Pointwise import Data.Vec.Functional.Relation.Binary.Pointwise.Properties -- Universal lifting of predicates over Vectors import Data.Vec.Functional.Relation.Unary.All -- Properties related to All import Data.Vec.Functional.Relation.Unary.All.Properties -- Existential lifting of predicates over Vectors import Data.Vec.Functional.Relation.Unary.Any -- Typeclass instances for Vec import Data.Vec.Instances -- Decidable propositional membership over vectors import Data.Vec.Membership.DecPropositional -- Decidable setoid membership over vectors. import Data.Vec.Membership.DecSetoid -- Data.Vec.Any.Membership instantiated with propositional equality, -- along with some additional definitions. import Data.Vec.Membership.Propositional -- Properties of membership of vectors based on propositional equality. import Data.Vec.Membership.Propositional.Properties -- Membership of vectors, along with some additional definitions. import Data.Vec.Membership.Setoid -- Code for converting Vec A n → B to and from n-ary functions import Data.Vec.N-ary -- Some Vec-related properties import Data.Vec.Properties -- Some Vec-related properties that depend on the K rule or make use -- of heterogeneous equality import Data.Vec.Properties.WithK -- Vectors defined by recursion import Data.Vec.Recursive -- An effectful view of vectors defined by recursion import Data.Vec.Recursive.Effectful -- Properties of n-ary products import Data.Vec.Recursive.Properties -- Reflection utilities for Vector import Data.Vec.Reflection -- An equational reasoning library for propositional equality over -- vectors of different indices using cast. import Data.Vec.Relation.Binary.Equality.Cast -- Decidable vector equality over propositional equality import Data.Vec.Relation.Binary.Equality.DecPropositional -- Decidable semi-heterogeneous vector equality over setoids import Data.Vec.Relation.Binary.Equality.DecSetoid -- Vector equality over propositional equality import Data.Vec.Relation.Binary.Equality.Propositional -- Code related to vector equality over propositional equality that -- makes use of heterogeneous equality import Data.Vec.Relation.Binary.Equality.Propositional.WithK -- Semi-heterogeneous vector equality over setoids import Data.Vec.Relation.Binary.Equality.Setoid -- Lexicographic ordering of same-length vector import Data.Vec.Relation.Binary.Lex.NonStrict -- Lexicographic ordering of lists of same-length vectors import Data.Vec.Relation.Binary.Lex.Strict -- Extensional pointwise lifting of relations to vectors import Data.Vec.Relation.Binary.Pointwise.Extensional -- Inductive pointwise lifting of relations to vectors import Data.Vec.Relation.Binary.Pointwise.Inductive -- Vectors where all elements satisfy a given property import Data.Vec.Relation.Unary.All -- Properties related to All import Data.Vec.Relation.Unary.All.Properties -- Vectors where every pair of elements are related (symmetrically) import Data.Vec.Relation.Unary.AllPairs -- Properties related to AllPairs import Data.Vec.Relation.Unary.AllPairs.Properties -- Vectors where at least one element satisfies a given property import Data.Vec.Relation.Unary.Any -- Properties of vector's Any import Data.Vec.Relation.Unary.Any.Properties -- Vectors where every consecutative pair of elements is related. import Data.Vec.Relation.Unary.Linked -- Properties related to Linked import Data.Vec.Relation.Unary.Linked.Properties -- Vectors made up entirely of unique elements (propositional equality) import Data.Vec.Relation.Unary.Unique.Propositional -- Properties of unique vectors (setoid equality) import Data.Vec.Relation.Unary.Unique.Propositional.Properties -- Vectors made up entirely of unique elements (setoid equality) import Data.Vec.Relation.Unary.Unique.Setoid -- Properties of unique vectors (setoid equality) import Data.Vec.Relation.Unary.Unique.Setoid.Properties -- Showing vectors import Data.Vec.Show -- W-types import Data.W -- Indexed W-types aka Petersson-Synek trees import Data.W.Indexed -- Some code related to the W type that relies on the K rule import Data.W.WithK -- Machine words import Data.Word64 -- Machine words: basic type and conversion functions import Data.Word64.Base -- Instances for words import Data.Word64.Instances -- Word64 Literals import Data.Word64.Literals -- Properties of operations on machine words import Data.Word64.Properties -- Turn a relation into a record definition so as to remember the things -- being related. -- This module has a readme file: README.Data.Wrap import Data.Wrap -- Applicative functors import Effect.Applicative -- Indexed applicative functors import Effect.Applicative.Indexed -- Applicative functors on indexed sets (predicates) import Effect.Applicative.Predicate -- Type constructors giving rise to a semigroup at every type -- e.g. (List, _++_) import Effect.Choice -- Comonads import Effect.Comonad -- Empty values (e.g. [] for List, nothing for Maybe) import Effect.Empty -- Functors import Effect.Functor -- Functors on indexed sets (predicates) import Effect.Functor.Predicate -- Monads import Effect.Monad -- A delimited continuation monad import Effect.Monad.Continuation -- The error monad transformer import Effect.Monad.Error.Transformer -- An effectful view of the identity function import Effect.Monad.Identity -- Typeclass instances for Identity import Effect.Monad.Identity.Instances -- Indexed monads import Effect.Monad.Indexed -- The partiality monad import Effect.Monad.Partiality -- An All predicate for the partiality monad import Effect.Monad.Partiality.All -- Typeclass instances for _⊥ import Effect.Monad.Partiality.Instances -- Monads on indexed sets (predicates) import Effect.Monad.Predicate -- The reader monad import Effect.Monad.Reader -- The indexed reader monad import Effect.Monad.Reader.Indexed -- Instances for the reader monad import Effect.Monad.Reader.Instances -- The reader monad transformer import Effect.Monad.Reader.Transformer -- Basic type and definition of the reader monad transformer import Effect.Monad.Reader.Transformer.Base -- The state monad import Effect.Monad.State -- The indexed state monad import Effect.Monad.State.Indexed -- Instances for the state monad import Effect.Monad.State.Instances -- The state monad transformer import Effect.Monad.State.Transformer -- Basic definition and functions on the state monad transformer import Effect.Monad.State.Transformer.Base -- The writer monad import Effect.Monad.Writer -- The indexed writer monad import Effect.Monad.Writer.Indexed -- Instances for the writer monad import Effect.Monad.Writer.Instances -- The writer monad transformer import Effect.Monad.Writer.Transformer -- Basic type and definition of the writer monad transformer import Effect.Monad.Writer.Transformer.Base -- Functions import Function -- Simple combinators working solely on and with functions import Function.Base -- Bundles for types of functions import Function.Bundles -- Relationships between properties of functions. See -- `Function.Consequences.Propositional` for specialisations to -- propositional equality. import Function.Consequences -- Relationships between properties of functions where the equality -- over both the domain and codomain is assumed to be _≡_ import Function.Consequences.Propositional -- Relationships between properties of functions where the equality -- over both the domain and codomain are assumed to be setoids. import Function.Consequences.Setoid -- Composition of functional properties import Function.Construct.Composition -- The constant function import Function.Construct.Constant -- The identity function import Function.Construct.Identity -- Some functional properties are symmetric import Function.Construct.Symmetry -- Definitions for types of functions. import Function.Definitions -- Bundles for types of functions import Function.Dependent.Bundles -- Endomorphisms on a Set import Function.Endo.Propositional -- Endomorphisms on a Setoid import Function.Endo.Setoid -- An effectful view of the identity function import Function.Identity.Effectful -- Operations on Relations for Indexed sets import Function.Indexed.Bundles -- Function setoids and related constructions import Function.Indexed.Relation.Binary.Equality -- Metrics with arbitrary domains and codomains import Function.Metric -- Bundles for metrics import Function.Metric.Bundles -- Definitions of properties over distance functions import Function.Metric.Definitions -- Metrics with ℕ as the codomain of the metric function import Function.Metric.Nat -- Bundles for metrics over ℕ import Function.Metric.Nat.Bundles -- Core definitions for metrics over ℕ import Function.Metric.Nat.Definitions -- Core definitions for metrics over ℕ import Function.Metric.Nat.Structures -- Metrics with ℚ as the codomain of the metric function import Function.Metric.Rational -- Bundles for metrics over ℚ import Function.Metric.Rational.Bundles -- Core definitions for metrics over ℚ import Function.Metric.Rational.Definitions -- Core definitions for metrics over ℚ import Function.Metric.Rational.Structures -- Some metric structures (not packed up with sets, operations, etc.) import Function.Metric.Structures -- Heterogeneous N-ary Functions import Function.Nary.NonDependent -- Heterogeneous N-ary Functions: basic types and operations import Function.Nary.NonDependent.Base -- Basic properties of the function type import Function.Properties -- Some basic properties of bijections. import Function.Properties.Bijection -- Some basic properties of equivalences. This file is designed to be -- imported qualified. import Function.Properties.Equivalence -- Properties for injections import Function.Properties.Injection -- Properties of inverses. import Function.Properties.Inverse -- Half adjoint equivalences import Function.Properties.Inverse.HalfAdjointEquivalence -- Properties of right inverses import Function.Properties.RightInverse -- Properties of surjections import Function.Properties.Surjection -- A module used for creating function pipelines, see -- README.Function.Reasoning for examples import Function.Reasoning -- Relatedness for the function hierarchy import Function.Related.Propositional -- Basic lemmas showing that various types are related (isomorphic or -- equivalent or…) import Function.Related.TypeIsomorphisms -- Automatic solver for equations over product and sum types import Function.Related.TypeIsomorphisms.Solver -- Function Equality setoid import Function.Relation.Binary.Setoid.Equality -- Strict combinators (i.e. that use call-by-value) import Function.Strict -- Structures for types of functions import Function.Structures -- Ways to give instances of certain structures where some fields can -- be given in terms of others. -- The contents of this file should usually be accessed from `Function`. import Function.Structures.Biased -- An abstraction of various forms of recursion/induction import Induction -- A standard consequence of accessibility/well-foundedness: -- the impossibility of 'infinite descent' from any (accessible) -- element x satisfying P to 'smaller' y also satisfying P import Induction.InfiniteDescent -- Lexicographic induction import Induction.Lexicographic -- Well-founded induction import Induction.WellFounded -- Universe levels import Level -- Conversion from naturals to universe levels import Level.Literals -- Support for reflection import Reflection -- The reflected abstract syntax tree import Reflection.AST -- Abstractions used in the reflection machinery import Reflection.AST.Abstraction -- Alpha equality over terms import Reflection.AST.AlphaEquality -- Arguments used in the reflection machinery import Reflection.AST.Argument -- Argument information used in the reflection machinery import Reflection.AST.Argument.Information -- Modalities used in the reflection machinery import Reflection.AST.Argument.Modality -- Argument quantities used in the reflection machinery import Reflection.AST.Argument.Quantity -- Argument relevance used in the reflection machinery import Reflection.AST.Argument.Relevance -- Argument visibility used in the reflection machinery import Reflection.AST.Argument.Visibility -- Weakening, strengthening and free variable check for reflected terms. import Reflection.AST.DeBruijn -- Definitions used in the reflection machinery import Reflection.AST.Definition -- Instances for reflected syntax import Reflection.AST.Instances -- Literals used in the reflection machinery import Reflection.AST.Literal -- Metavariables used in the reflection machinery import Reflection.AST.Meta -- Names used in the reflection machinery import Reflection.AST.Name -- Patterns used in the reflection machinery import Reflection.AST.Pattern -- Converting reflection machinery to strings import Reflection.AST.Show -- Terms used in the reflection machinery import Reflection.AST.Term -- de Bruijn-aware generic traversal of reflected terms. import Reflection.AST.Traversal -- A universe for the types involved in the reflected syntax. import Reflection.AST.Universe -- Annotated reflected syntax. import Reflection.AnnotatedAST -- Computing free variable annotations on reflected syntax. import Reflection.AnnotatedAST.Free -- Support for system calls as part of reflection import Reflection.External -- The TC (Type Checking) monad import Reflection.TCM -- Typeclass instances for TC import Reflection.TCM.Effectful -- Printf-style versions of typeError and debugPrint import Reflection.TCM.Format -- Typeclass instances for TC import Reflection.TCM.Instances -- Monad syntax for the TC monad import Reflection.TCM.Syntax -- Reflection utilities import Reflection.TCM.Utilities -- Properties of homogeneous binary relations import Relation.Binary -- Bundles for homogeneous binary relations import Relation.Binary.Bundles -- Some properties imply others import Relation.Binary.Consequences -- A pointwise lifting of a relation to incorporate new extrema. import Relation.Binary.Construct.Add.Extrema.Equality -- The lifting of a non-strict order to incorporate new extrema import Relation.Binary.Construct.Add.Extrema.NonStrict -- The lifting of a strict order to incorporate new extrema import Relation.Binary.Construct.Add.Extrema.Strict -- A pointwise lifting of a relation to incorporate a new infimum. import Relation.Binary.Construct.Add.Infimum.Equality -- The lifting of a non-strict order to incorporate a new infimum import Relation.Binary.Construct.Add.Infimum.NonStrict -- The lifting of a non-strict order to incorporate a new infimum import Relation.Binary.Construct.Add.Infimum.Strict -- A pointwise lifting of a relation to incorporate an additional point. import Relation.Binary.Construct.Add.Point.Equality -- A pointwise lifting of a relation to incorporate a new supremum. import Relation.Binary.Construct.Add.Supremum.Equality -- The lifting of a non-strict order to incorporate a new supremum import Relation.Binary.Construct.Add.Supremum.NonStrict -- The lifting of a strict order to incorporate a new supremum import Relation.Binary.Construct.Add.Supremum.Strict -- The universal binary relation import Relation.Binary.Construct.Always -- The reflexive, symmetric and transitive closure of a binary -- relation (aka the equivalence closure). import Relation.Binary.Construct.Closure.Equivalence -- Some properties of equivalence closures. import Relation.Binary.Construct.Closure.Equivalence.Properties -- Reflexive closures import Relation.Binary.Construct.Closure.Reflexive -- Some properties of reflexive closures import Relation.Binary.Construct.Closure.Reflexive.Properties -- Some properties of reflexive closures which rely on the K rule import Relation.Binary.Construct.Closure.Reflexive.Properties.WithK -- The reflexive transitive closures of McBride, Norell and Jansson import Relation.Binary.Construct.Closure.ReflexiveTransitive -- Some properties of reflexive transitive closures. import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties -- Properties, related to reflexive transitive closures, that rely on -- the K rule import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties.WithK -- Symmetric closures of binary relations import Relation.Binary.Construct.Closure.Symmetric -- Symmetric transitive closures of binary relations import Relation.Binary.Construct.Closure.SymmetricTransitive -- Transitive closures import Relation.Binary.Construct.Closure.Transitive -- Some code related to transitive closures that relies on the K rule import Relation.Binary.Construct.Closure.Transitive.WithK -- Composition of two binary relations import Relation.Binary.Construct.Composition -- The binary relation defined by a constant import Relation.Binary.Construct.Constant -- Many properties which hold for `∼` also hold for `flip ∼`. Unlike -- the module `Relation.Binary.Construct.Flip.Ord` this module does not -- flip the underlying equality. import Relation.Binary.Construct.Flip.EqAndOrd -- Many properties which hold for `∼` also hold for `flip ∼`. Unlike -- the module `Relation.Binary.Construct.Flip.EqAndOrd` this module -- flips both the relation and the underlying equality. import Relation.Binary.Construct.Flip.Ord -- Every respectful unary relation induces a preorder. No claim is -- made that this preorder is unique. import Relation.Binary.Construct.FromPred -- Every respectful binary relation induces a preorder. No claim is -- made that this preorder is unique. import Relation.Binary.Construct.FromRel -- Symmetric interior of a binary relation import Relation.Binary.Construct.Interior.Symmetric -- Intersection of two binary relations import Relation.Binary.Construct.Intersection -- Conversion of binary operators to binary relations via the left -- natural order. import Relation.Binary.Construct.NaturalOrder.Left -- Conversion of binary operators to binary relations via the right -- natural order. import Relation.Binary.Construct.NaturalOrder.Right -- The empty binary relation import Relation.Binary.Construct.Never -- Conversion of _≤_ to _<_ import Relation.Binary.Construct.NonStrictToStrict -- Many properties which hold for `_∼_` also hold for `_∼_ on f` import Relation.Binary.Construct.On -- Conversion of < to ≤, along with a number of properties import Relation.Binary.Construct.StrictToNonStrict -- Substituting equalities for binary relations import Relation.Binary.Construct.Subst.Equality -- Union of two binary relations import Relation.Binary.Construct.Union -- Properties of binary relations import Relation.Binary.Definitions -- Heterogeneous equality import Relation.Binary.HeterogeneousEquality -- Quotients for Heterogeneous equality import Relation.Binary.HeterogeneousEquality.Quotients -- Example of a Quotient: ℤ as (ℕ × ℕ / ∼) import Relation.Binary.HeterogeneousEquality.Quotients.Examples -- Heterogeneously-indexed binary relations import Relation.Binary.Indexed.Heterogeneous -- Indexed binary relations import Relation.Binary.Indexed.Heterogeneous.Bundles -- Instantiates indexed binary structures at an index to the equivalent -- non-indexed structures. import Relation.Binary.Indexed.Heterogeneous.Construct.At -- Creates trivially indexed records from their non-indexed counterpart. import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial -- Indexed binary relations import Relation.Binary.Indexed.Heterogeneous.Definitions -- Indexed binary relations import Relation.Binary.Indexed.Heterogeneous.Structures -- Homogeneously-indexed binary relations import Relation.Binary.Indexed.Homogeneous -- Homogeneously-indexed binary relations import Relation.Binary.Indexed.Homogeneous.Bundles -- Instantiating homogeneously indexed bundles at a particular index import Relation.Binary.Indexed.Homogeneous.Construct.At -- Homogeneously-indexed binary relations import Relation.Binary.Indexed.Homogeneous.Definitions -- Homogeneously-indexed binary relations import Relation.Binary.Indexed.Homogeneous.Structures -- Order-theoretic lattices import Relation.Binary.Lattice -- Bundles for order-theoretic lattices import Relation.Binary.Lattice.Bundles -- Definitions for order-theoretic lattices import Relation.Binary.Lattice.Definitions -- Properties satisfied by bounded join semilattices import Relation.Binary.Lattice.Properties.BoundedJoinSemilattice -- Properties satisfied by bounded lattice import Relation.Binary.Lattice.Properties.BoundedLattice -- Properties satisfied by bounded meet semilattices import Relation.Binary.Lattice.Properties.BoundedMeetSemilattice -- Properties for distributive lattice import Relation.Binary.Lattice.Properties.DistributiveLattice -- Properties satisfied by Heyting Algebra import Relation.Binary.Lattice.Properties.HeytingAlgebra -- Properties satisfied by join semilattices import Relation.Binary.Lattice.Properties.JoinSemilattice -- Properties satisfied by lattices import Relation.Binary.Lattice.Properties.Lattice -- Properties satisfied by meet semilattices import Relation.Binary.Lattice.Properties.MeetSemilattice -- Structures for order-theoretic lattices import Relation.Binary.Lattice.Structures -- Order morphisms import Relation.Binary.Morphism -- Bundles for morphisms between binary relations import Relation.Binary.Morphism.Bundles -- The composition of morphisms between binary relations import Relation.Binary.Morphism.Construct.Composition -- Constant morphisms between binary relations import Relation.Binary.Morphism.Construct.Constant -- The identity morphism for binary relations import Relation.Binary.Morphism.Construct.Identity -- Basic definitions for morphisms between algebraic structures import Relation.Binary.Morphism.Definitions -- Consequences of a monomorphism between orders import Relation.Binary.Morphism.OrderMonomorphism -- Consequences of a monomorphism between binary relations import Relation.Binary.Morphism.RelMonomorphism -- Order morphisms import Relation.Binary.Morphism.Structures -- Apartness properties import Relation.Binary.Properties.ApartnessRelation -- Every decidable setoid induces tight apartness relation. import Relation.Binary.Properties.DecSetoid -- Properties satisfied by decidable total orders import Relation.Binary.Properties.DecTotalOrder -- Properties satisfied by posets import Relation.Binary.Properties.Poset -- Properties satisfied by preorders import Relation.Binary.Properties.Preorder -- Additional properties for setoids import Relation.Binary.Properties.Setoid -- Properties satisfied by strict partial orders import Relation.Binary.Properties.StrictPartialOrder -- Properties satisfied by strict partial orders import Relation.Binary.Properties.StrictTotalOrder -- Properties satisfied by total orders import Relation.Binary.Properties.TotalOrder -- Propositional (intensional) equality import Relation.Binary.PropositionalEquality -- Propositional (intensional) equality - Algebraic structures import Relation.Binary.PropositionalEquality.Algebra -- Propositional equality import Relation.Binary.PropositionalEquality.Properties -- Some code related to propositional equality that relies on the K -- rule import Relation.Binary.PropositionalEquality.WithK -- The basic code for equational reasoning with three relations: -- equality and apartness import Relation.Binary.Reasoning.Base.Apartness -- The basic code for equational reasoning with two relations: -- equality and some other ordering. import Relation.Binary.Reasoning.Base.Double -- The basic code for equational reasoning with a non-reflexive relation import Relation.Binary.Reasoning.Base.Partial -- The basic code for equational reasoning with a single relation import Relation.Binary.Reasoning.Base.Single -- The basic code for equational reasoning with three relations: -- equality, strict ordering and non-strict ordering. import Relation.Binary.Reasoning.Base.Triple -- Convenient syntax for "equational reasoning" in multiple Setoids. import Relation.Binary.Reasoning.MultiSetoid -- Convenient syntax for "equational reasoning" using a partial order import Relation.Binary.Reasoning.PartialOrder -- Convenient syntax for reasoning with a partial setoid import Relation.Binary.Reasoning.PartialSetoid -- Convenient syntax for "equational reasoning" using a preorder import Relation.Binary.Reasoning.Preorder -- Convenient syntax for reasoning with a setoid import Relation.Binary.Reasoning.Setoid -- Convenient syntax for "equational reasoning" using a strict partial -- order. import Relation.Binary.Reasoning.StrictPartialOrder -- Syntax for the building blocks of equational reasoning modules import Relation.Binary.Reasoning.Syntax -- Helpers intended to ease the development of "tactics" which use -- proof by reflection import Relation.Binary.Reflection -- Concepts from rewriting theory -- Definitions are based on "Term Rewriting Systems" by J.W. Klop import Relation.Binary.Rewriting -- Structures for homogeneous binary relations import Relation.Binary.Structures -- Ways to give instances of certain structures where some fields can -- be given in terms of others import Relation.Binary.Structures.Biased -- Typeclasses for use with instance arguments import Relation.Binary.TypeClasses -- Heterogeneous N-ary Relations import Relation.Nary -- Operations on nullary relations (like negation and decidability) import Relation.Nullary -- Notation for freely adding extrema to any set import Relation.Nullary.Construct.Add.Extrema -- Notation for freely adding an infimum to any set import Relation.Nullary.Construct.Add.Infimum -- Notation for adding an additional point to any set import Relation.Nullary.Construct.Add.Point -- Notation for freely adding a supremum to any set import Relation.Nullary.Construct.Add.Supremum -- Operations on and properties of decidable relations import Relation.Nullary.Decidable -- Negation indexed by a Level import Relation.Nullary.Indexed -- Properties of indexed negation import Relation.Nullary.Indexed.Negation -- Properties related to negation import Relation.Nullary.Negation -- Recomputable types and their algebra as Harrop formulas import Relation.Nullary.Recomputable -- Properties of the `Reflects` construct import Relation.Nullary.Reflects -- A universe of proposition functors, along with some properties import Relation.Nullary.Universe -- Unary relations import Relation.Unary -- Algebraic properties of constructions over unary relations import Relation.Unary.Algebra -- Closures of a unary relation with respect to a binary one. import Relation.Unary.Closure.Base -- Closure of a unary relation with respect to a preorder import Relation.Unary.Closure.Preorder -- Closures of a unary relation with respect to a strict partial order import Relation.Unary.Closure.StrictPartialOrder -- Some properties imply others import Relation.Unary.Consequences -- Indexed unary relations import Relation.Unary.Indexed -- Polymorphic versions of standard definitions in Relation.Unary import Relation.Unary.Polymorphic -- Properties of polymorphic versions of standard definitions in -- Relation.Unary import Relation.Unary.Polymorphic.Properties -- Predicate transformers import Relation.Unary.PredicateTransformer -- Properties of constructions over unary relations import Relation.Unary.Properties -- Equality of unary relations import Relation.Unary.Relation.Binary.Equality -- Order properties of the subset relations _⊆_ and _⊂_ import Relation.Unary.Relation.Binary.Subset -- ANSI escape codes import System.Console.ANSI -- A simple tactic for used to automatically compute the function -- argument to cong. import Tactic.Cong -- Reflection-based solver for monoid equalities import Tactic.MonoidSolver -- A solver that uses reflection to automatically obtain and solve -- equations over rings. import Tactic.RingSolver -- Almost commutative rings import Tactic.RingSolver.Core.AlmostCommutativeRing -- A type for expressions over a raw ring. import Tactic.RingSolver.Core.Expression -- Simple implementation of sets of ℕ. import Tactic.RingSolver.Core.NatSet -- Sparse polynomials in a commutative ring, encoded in Horner normal -- form. import Tactic.RingSolver.Core.Polynomial.Base -- Some specialised instances of the ring solver import Tactic.RingSolver.Core.Polynomial.Homomorphism -- Homomorphism proofs for addition over polynomials import Tactic.RingSolver.Core.Polynomial.Homomorphism.Addition -- Homomorphism proofs for constants over polynomials import Tactic.RingSolver.Core.Polynomial.Homomorphism.Constants -- Homomorphism proofs for exponentiation over polynomials import Tactic.RingSolver.Core.Polynomial.Homomorphism.Exponentiation -- Lemmas for use in proving the polynomial homomorphism. import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas -- Homomorphism proofs for multiplication over polynomials import Tactic.RingSolver.Core.Polynomial.Homomorphism.Multiplication -- Homomorphism proofs for negation over polynomials import Tactic.RingSolver.Core.Polynomial.Homomorphism.Negation -- Homomorphism proofs for variables and constants over polynomials import Tactic.RingSolver.Core.Polynomial.Homomorphism.Variables -- Bundles of parameters for passing to the Ring Solver import Tactic.RingSolver.Core.Polynomial.Parameters -- Polynomial reasoning import Tactic.RingSolver.Core.Polynomial.Reasoning -- "Evaluating" a polynomial, using Horner's method. import Tactic.RingSolver.Core.Polynomial.Semantics -- An implementation of the ring solver that requires you to manually -- pass the equation you wish to solve. import Tactic.RingSolver.NonReflective -- Format strings for Printf and Scanf import Text.Format -- Format strings for Printf and Scanf import Text.Format.Generic -- Printf import Text.Printf -- Generic printf function. import Text.Printf.Generic -- Regular expressions import Text.Regex -- Regular expressions: basic types and semantics import Text.Regex.Base -- Regular expressions: Brzozowski derivative import Text.Regex.Derivative.Brzozowski -- Properties of regular expressions and their semantics import Text.Regex.Properties -- Regular expressions: search algorithms import Text.Regex.Search -- Regular expressions: smart constructors -- Computing the Brzozowski derivative of a regular expression may lead -- to a blow-up in the size of the expression. To keep it tractable it -- is crucial to use smart constructors. import Text.Regex.SmartConstructors -- Regular expressions acting on strings import Text.Regex.String -- Fancy display functions for List-based tables import Text.Tabular.Base -- Fancy display functions for List-based tables import Text.Tabular.List -- Fancy display functions for Vec-based tables import Text.Tabular.Vec