------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of divisibility over semirings
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra using (Semiring)
import Algebra.Properties.Monoid.Divisibility as MonoidDivisibility
open import Data.Product.Base using (_,_)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)

module Algebra.Properties.Semiring.Divisibility
  {a } (R : Semiring a ) where

open Semiring R

------------------------------------------------------------------------
-- Re-exporting divisibility over monoids

open MonoidDivisibility *-monoid public
  renaming (ε∣_ to 1∣_)

------------------------------------------------------------------------
-- Divisibility properties specific to semirings.

infixr 8 _∣0

_∣0 :  x  x  0#
x ∣0 = 0# , zeroˡ x

0∣x⇒x≈0 :  {x}  0#  x  x  0#
0∣x⇒x≈0 (q , q*0≈x) = trans (sym q*0≈x) (zeroʳ q)

x∣y∧y≉0⇒x≉0 :  {x y}  x  y  y  0#  x  0#
x∣y∧y≉0⇒x≉0 x∣y y≉0 x≈0 = y≉0 (0∣x⇒x≈0 (∣-respˡ x≈0 x∣y))

0∤1 : 0#  1#  0#  1#
0∤1 0≉1 (q , q*0≈1) = 0≉1 (trans (sym (zeroʳ q)) q*0≈1)