{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Nullary.Construct.Add.Extrema where
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
open import Relation.Nullary.Construct.Add.Infimum as Infimum using (_₋)
open import Relation.Nullary.Construct.Add.Supremum as Supremum using (_⁺)
_± : ∀ {a} → Set a → Set a
A ± = A ₋ ⁺
pattern ⊥± = Supremum.[ Infimum.⊥₋ ]
pattern [_] k = Supremum.[ Infimum.[ k ] ]
pattern ⊤± = Supremum.⊤⁺
[_]-injective : ∀ {a} {A : Set a} {k l : A} → [ k ] ≡ [ l ] → k ≡ l
[_]-injective refl = refl