------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by lattices
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Lattice

module Relation.Binary.Lattice.Properties.Lattice
  {c ℓ₁ ℓ₂} (L : Lattice c ℓ₁ ℓ₂) where

open Lattice L

import Algebra.Lattice as Alg
import Algebra.Structures as Alg
open import Algebra.Definitions _≈_
open import Data.Product.Base using (_,_)
open import Function.Base using (flip)
open import Relation.Binary.Properties.Poset poset
import Relation.Binary.Lattice.Properties.JoinSemilattice joinSemilattice as J
import Relation.Binary.Lattice.Properties.MeetSemilattice meetSemilattice as M
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
import Relation.Binary.Reasoning.PartialOrder as ≤-Reasoning

∨-absorbs-∧ : _∨_ Absorbs _∧_
∨-absorbs-∧ x y =
  let x≤x∨[x∧y] , _ , least = supremum  x (x  y)
      x∧y≤x     , _ , _     = infimum x y
  in antisym (least x refl x∧y≤x) x≤x∨[x∧y]

∧-absorbs-∨ : _∧_ Absorbs _∨_
∧-absorbs-∨ x y =
  let x∧[x∨y]≤x , _ , greatest = infimum  x (x  y)
      x≤x∨y     , _ , _        = supremum x y
  in antisym x∧[x∨y]≤x (greatest x refl x≤x∨y)

absorptive : Absorptive _∨_ _∧_
absorptive = ∨-absorbs-∧ , ∧-absorbs-∨

∧≤∨ :  {x y}  x  y  x  y
∧≤∨ {x} {y} = begin
  x  y ≤⟨ x∧y≤x x y 
  x     ≤⟨ x≤x∨y x y 
  x  y 
  where open ≤-Reasoning poset

-- two quadrilateral arguments

quadrilateral₁ :  {x y}  x  y  x  x  y  y
quadrilateral₁ {x} {y} x∨y≈x = begin
  x  y       ≈⟨ M.∧-cong (Eq.sym x∨y≈x) Eq.refl 
  (x  y)  y ≈⟨ M.∧-comm _ _ 
  y  (x  y) ≈⟨ M.∧-cong Eq.refl (J.∨-comm _ _) 
  y  (y  x) ≈⟨ ∧-absorbs-∨ _ _ 
  y           
  where open ≈-Reasoning setoid

quadrilateral₂ :  {x y}  x  y  y  x  y  x
quadrilateral₂ {x} {y} x∧y≈y = begin
  x  y       ≈⟨ J.∨-cong Eq.refl (Eq.sym x∧y≈y) 
  x  (x  y) ≈⟨ ∨-absorbs-∧ _ _ 
  x           
  where open ≈-Reasoning setoid

-- collapsing sublattice

collapse₁ :  {x y}  x  y  x  y  x  y
collapse₁ {x} {y} x≈y = begin
  x  y ≈⟨ M.y≤x⇒x∧y≈y y≤x 
  y     ≈⟨ Eq.sym x≈y 
  x     ≈⟨ Eq.sym (J.x≤y⇒x∨y≈y y≤x) 
  y  x ≈⟨ J.∨-comm _ _ 
  x  y 
  where
  y≤x = reflexive (Eq.sym x≈y)
  open ≈-Reasoning setoid

-- this can also be proved by quadrilateral argument, but it's much less symmetric.
collapse₂ :  {x y}  x  y  x  y  x  y
collapse₂ {x} {y} ∨≤∧ = antisym
  (begin x     ≤⟨ x≤x∨y _ _ 
         x  y ≤⟨ ∨≤∧ 
         x  y ≤⟨ x∧y≤y _ _ 
         y     )
  (begin y     ≤⟨ y≤x∨y _ _ 
         x  y ≤⟨ ∨≤∧ 
         x  y ≤⟨ x∧y≤x _ _ 
         x     )
  where open ≤-Reasoning poset

------------------------------------------------------------------------
-- The dual construction is also a lattice.

∧-∨-isLattice : IsLattice _≈_ (flip _≤_) _∧_ _∨_
∧-∨-isLattice = record
  { isPartialOrder = ≥-isPartialOrder
  ; supremum       = infimum
  ; infimum        = supremum
  }

∧-∨-lattice : Lattice c ℓ₁ ℓ₂
∧-∨-lattice = record
  { _∧_       = _∨_
  ; _∨_       = _∧_
  ; isLattice = ∧-∨-isLattice
  }

------------------------------------------------------------------------
-- Every order-theoretic lattice can be turned into an algebraic one.

isAlgLattice : Alg.IsLattice _≈_ _∨_ _∧_
isAlgLattice = record
  { isEquivalence = isEquivalence
  ; ∨-comm        = J.∨-comm
  ; ∨-assoc       = J.∨-assoc
  ; ∨-cong        = J.∨-cong
  ; ∧-comm        = M.∧-comm
  ; ∧-assoc       = M.∧-assoc
  ; ∧-cong        = M.∧-cong
  ; absorptive    = absorptive
  }

algLattice : Alg.Lattice c ℓ₁
algLattice = record { isLattice = isAlgLattice }