{-# OPTIONS --cubical-compatible --safe #-}
open import Level using (Level)
module Algebra.Construct.Terminal {c β : Level} where
open import Algebra.Bundles
open import Data.Unit.Polymorphic
open import Relation.Binary.Core using (Rel)
module πne where
infix 4 _β_
Carrier : Set c
Carrier = β€
_β_ : Rel Carrier β
_ β _ = β€
rawMagma : RawMagma c β
rawMagma = record { πne }
rawMonoid : RawMonoid c β
rawMonoid = record { πne }
rawGroup : RawGroup c β
rawGroup = record { πne }
rawNearSemiring : RawNearSemiring c β
rawNearSemiring = record { πne }
rawSemiring : RawSemiring c β
rawSemiring = record { πne }
rawRing : RawRing c β
rawRing = record { πne }
magma : Magma c β
magma = record { πne }
semigroup : Semigroup c β
semigroup = record { πne }
band : Band c β
band = record { πne }
commutativeSemigroup : CommutativeSemigroup c β
commutativeSemigroup = record { πne }
monoid : Monoid c β
monoid = record { πne }
commutativeMonoid : CommutativeMonoid c β
commutativeMonoid = record { πne }
idempotentCommutativeMonoid : IdempotentCommutativeMonoid c β
idempotentCommutativeMonoid = record { πne }
group : Group c β
group = record { πne }
abelianGroup : AbelianGroup c β
abelianGroup = record { πne }
nearSemiring : NearSemiring c β
nearSemiring = record { πne }
semiring : Semiring c β
semiring = record { πne }
ring : Ring c β
ring = record { πne }