------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic ordering of same-length vector
------------------------------------------------------------------------

-- The definitions of lexicographic orderings used here is suitable if
-- the argument order is a (non-strict) partial order.

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Vec.Relation.Binary.Lex.NonStrict where

open import Data.Empty
open import Data.Unit.Base using (; tt)
open import Data.Product.Base using (proj₁; proj₂)
open import Data.Nat.Base using ()
open import Data.Vec.Base using (Vec; []; _∷_)
import Data.Vec.Relation.Binary.Lex.Strict as Strict
open import Data.Vec.Relation.Binary.Pointwise.Inductive as Pointwise
  using (Pointwise; []; _∷_; head; tail)
open import Function.Base using (id)
open import Level using (Level; _⊔_)
open import Relation.Binary.Core using (REL; Rel; _⇒_)
open import Relation.Binary.Bundles
  using (Poset; StrictPartialOrder; DecPoset; DecStrictPartialOrder; DecTotalOrder; StrictTotalOrder; Preorder; TotalOrder)
open import Relation.Binary.Structures
  using (IsEquivalence; IsPartialOrder; IsStrictPartialOrder; IsDecPartialOrder; IsDecStrictPartialOrder; IsDecTotalOrder; IsStrictTotalOrder; IsPreorder; IsTotalOrder)
open import Relation.Binary.Definitions
  using (Irreflexive; _Respects₂_; Antisymmetric; Asymmetric; Symmetric; Trans; Decidable; Total; Trichotomous)
import Relation.Binary.Construct.NonStrictToStrict as Conv
open import Relation.Nullary hiding (Irrelevant)

private
  variable
    a ℓ₁ ℓ₂ : Level
    A : Set a

------------------------------------------------------------------------
-- Publicly re-export definitions from Core
------------------------------------------------------------------------

open import Data.Vec.Relation.Binary.Lex.Core as Core public
  using (base; this; next; ≰-this; ≰-next)

------------------------------------------------------------------------
-- Definitions
------------------------------------------------------------------------

module _ {A : Set a} (_≈_ : Rel A ℓ₁) (_≼_ : Rel A ℓ₂) where

  Lex-< :  {m n}  REL (Vec A m) (Vec A n) (a  ℓ₁  ℓ₂)
  Lex-< = Core.Lex {A = A}  _≈_ (Conv._<_ _≈_ _≼_)

  Lex-≤ :  {m n}  REL (Vec A m) (Vec A n) (a  ℓ₁  ℓ₂)
  Lex-≤ = Core.Lex {A = A}  _≈_ (Conv._<_ _≈_ _≼_)

------------------------------------------------------------------------
-- Properties of Lex-<
------------------------------------------------------------------------

module _ {_≈_ : Rel A ℓ₁} {_≼_ : Rel A ℓ₂} where

  private
    _≋_ = Pointwise _≈_
    _<_ = Lex-< _≈_ _≼_

  <-irrefl :  {m n}  Irreflexive (_≋_ {m} {n}) _<_
  <-irrefl = Strict.<-irrefl (Conv.<-irrefl _≈_ _≼_)

  <-asym : IsEquivalence _≈_  _≼_ Respects₂ _≈_  Antisymmetric _≈_ _≼_ 
            {n}  Asymmetric (_<_ {n} {n})
  <-asym ≈-equiv ≼-resp-≈ ≼-antisym = Strict.<-asym sym
    (Conv.<-resp-≈ _ _ ≈-equiv ≼-resp-≈)
    (Conv.<-asym _≈_ _ ≼-antisym)
    where open IsEquivalence ≈-equiv

  <-antisym : Symmetric _≈_  Antisymmetric _≈_ _≼_ 
               {n}  Antisymmetric (_≋_ {n} {n}) _<_
  <-antisym ≈-sym ≼-antisym = Core.antisym ≈-sym
    (Conv.<-irrefl _≈_ _≼_)
    (Conv.<-asym _≈_ _≼_ ≼-antisym)

  <-trans : IsPartialOrder _≈_ _≼_ 
             {m n o}  Trans (_<_ {m} {n}) (_<_ {n} {o}) _<_
  <-trans ≼-isPartialOrder = Core.transitive Eq.isPartialEquivalence
    (Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
    (Conv.<-trans _ _ ≼-isPartialOrder)
    where open IsPartialOrder ≼-isPartialOrder

  <-resp₂ : IsEquivalence _≈_  _≼_ Respects₂ _≈_ 
             {n}  _Respects₂_ (_<_ {n} {n}) _≋_
  <-resp₂ ≈-equiv ≼-resp-≈ = Core.respects₂
    (IsEquivalence.isPartialEquivalence ≈-equiv)
    (Conv.<-resp-≈ _ _ ≈-equiv ≼-resp-≈)

  <-cmp : Symmetric _≈_  Decidable _≈_  Antisymmetric _≈_ _≼_  Total _≼_ 
           {n}  Trichotomous (_≋_ {n} {n}) _<_
  <-cmp ≈-sym _≟_ ≼-antisym ≼-total = Strict.<-cmp ≈-sym
    (Conv.<-trichotomous _ _ ≈-sym _≟_ ≼-antisym ≼-total)

  <-dec : Decidable _≈_  Decidable _≼_   {m n}  Decidable (_<_ {m} {n})
  <-dec _≟_ _≼?_ = Core.decidable (no id) _≟_
    (Conv.<-decidable _ _ _≟_ _≼?_)

------------------------------------------------------------------------
-- Structures

  <-isStrictPartialOrder : IsPartialOrder _≈_ _≼_ 
                            {n}  IsStrictPartialOrder (_≋_ {n} {n}) _<_
  <-isStrictPartialOrder ≼-isPartialOrder {n} = Strict.<-isStrictPartialOrder
    (Conv.<-isStrictPartialOrder _ _ ≼-isPartialOrder)

  <-isDecStrictPartialOrder : IsDecPartialOrder _≈_ _≼_ 
                               {n}  IsDecStrictPartialOrder (_≋_ {n} {n}) _<_
  <-isDecStrictPartialOrder ≼-isDecPartialOrder {n} = Strict.<-isDecStrictPartialOrder
    (Conv.<-isDecStrictPartialOrder _ _ ≼-isDecPartialOrder)

  <-isStrictTotalOrder : IsDecTotalOrder _≈_ _≼_ 
                          {n}  IsStrictTotalOrder (_≋_ {n} {n}) _<_
  <-isStrictTotalOrder ≼-isDecTotalOrder {n} = Strict.<-isStrictTotalOrder
    (Conv.<-isStrictTotalOrder₂ _ _ ≼-isDecTotalOrder)

------------------------------------------------------------------------
-- Bundles

<-strictPartialOrder : Poset a ℓ₁ ℓ₂    StrictPartialOrder _ _ _
<-strictPartialOrder ≼-po n = record
  { isStrictPartialOrder = <-isStrictPartialOrder isPartialOrder {n = n}
  } where open Poset ≼-po

<-decStrictPartialOrder : DecPoset a ℓ₁ ℓ₂    DecStrictPartialOrder _ _ _
<-decStrictPartialOrder ≼-dpo n = record
  { isDecStrictPartialOrder = <-isDecStrictPartialOrder isDecPartialOrder {n = n}
  } where open DecPoset ≼-dpo

<-strictTotalOrder : DecTotalOrder a ℓ₁ ℓ₂    StrictTotalOrder _ _ _
<-strictTotalOrder ≼-dto n = record
  { isStrictTotalOrder = <-isStrictTotalOrder isDecTotalOrder {n = n}
  } where open DecTotalOrder ≼-dto

------------------------------------------------------------------------
-- Properties of Lex-≤
------------------------------------------------------------------------

module _ {_≈_ : Rel A ℓ₁} {_≼_ : Rel A ℓ₂} where

  private
    _≋_ = Pointwise _≈_
    _<_ = Lex-< _≈_ _≼_
    _≤_ = Lex-≤ _≈_ _≼_

  <⇒≤ :  {m n} {xs : Vec A m} {ys : Vec A n}  xs < ys  xs  ys
  <⇒≤ = Core.map-P ⊥-elim

  ≤-refl :  {m n}  (_≋_ {m} {n})  _≤_
  ≤-refl = Strict.≤-refl

  ≤-antisym : Symmetric _≈_  Antisymmetric _≈_ _≼_ 
               {n}  Antisymmetric (_≋_ {n} {n}) _≤_
  ≤-antisym ≈-sym ≼-antisym = Core.antisym ≈-sym
    (Conv.<-irrefl _≈_ _≼_)
    (Conv.<-asym _ _≼_ ≼-antisym)

  private
    trans : IsPartialOrder _≈_ _≼_   {P₁ P₂} {m n o} 
            Trans (Core.Lex P₁ _≈_ (Conv._<_ _≈_ _≼_) {m} {n}) (Core.Lex P₂ _≈_ (Conv._<_ _≈_ _≼_) {n} {o}) _
    trans ≼-po = Core.transitive′
      (IsEquivalence.isPartialEquivalence isEquivalence)
      (Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
      (Conv.<-trans _ _≼_ ≼-po)
      where open IsPartialOrder ≼-po

  ≤-trans : IsPartialOrder _≈_ _≼_   {m n o}  Trans (_≤_ {m} {n}) (_≤_ {n} {o}) _≤_
  ≤-trans ≼-po xs≤ys ys≤zs = Core.map-P proj₁ (trans ≼-po xs≤ys ys≤zs)

  <-transʳ : IsPartialOrder _≈_ _≼_   {m n o}  Trans (_≤_ {m} {n}) (_<_ {n} {o}) _<_
  <-transʳ ≼-po xs≤ys ys<zs = Core.map-P proj₂ (trans ≼-po xs≤ys ys<zs)

  <-transˡ : IsPartialOrder _≈_ _≼_   {m n o}  Trans (_<_ {m} {n}) (_≤_ {n} {o}) _<_
  <-transˡ ≼-po xs<ys ys≤zs = Core.map-P proj₁ (trans ≼-po xs<ys ys≤zs)

  ≤-total : Symmetric _≈_  Decidable _≈_  Antisymmetric _≈_ _≼_  Total _≼_ 
             {n}  Total (_≤_ {n})
  ≤-total ≈-sym _≟_ ≼-antisym ≼-total = Strict.≤-total ≈-sym
    (Conv.<-trichotomous _ _ ≈-sym _≟_ ≼-antisym ≼-total)

  ≤-dec : Decidable _≈_  Decidable _≼_ 
           {m n}  Decidable (_≤_ {m} {n})
  ≤-dec _≟_ _≼?_ = Core.decidable (yes tt) _≟_
    (Conv.<-decidable _ _ _≟_ _≼?_)

  ≤-resp₂ : IsEquivalence _≈_  _≼_ Respects₂ _≈_ 
             {n}  _Respects₂_ (_≤_ {n} {n}) _≋_
  ≤-resp₂ ≈-equiv ≼-resp-≈ = Core.respects₂
    (IsEquivalence.isPartialEquivalence ≈-equiv)
    (Conv.<-resp-≈ _ _ ≈-equiv ≼-resp-≈)

------------------------------------------------------------------------
-- Structures

  ≤-isPreorder : IsPartialOrder _≈_ _≼_ 
                  {n}  IsPreorder (_≋_ {n} {n}) _≤_
  ≤-isPreorder ≼-po = Strict.≤-isPreorder isEquivalence (Conv.<-trans _ _ ≼-po) (Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
    where open IsPartialOrder ≼-po

  ≤-isPartialOrder : IsPartialOrder _≈_ _≼_ 
                      {n}  IsPartialOrder (_≋_ {n} {n}) _≤_
  ≤-isPartialOrder ≼-po = Strict.≤-isPartialOrder (Conv.<-isStrictPartialOrder _ _ ≼-po)

  ≤-isDecPartialOrder : IsDecPartialOrder _≈_ _≼_ 
                         {n}  IsDecPartialOrder (_≋_ {n} {n}) _≤_
  ≤-isDecPartialOrder ≼-dpo = Strict.≤-isDecPartialOrder (Conv.<-isDecStrictPartialOrder _ _ ≼-dpo)

  ≤-isTotalOrder : Decidable _≈_  IsTotalOrder _≈_ _≼_ 
                    {n}  IsTotalOrder (_≋_ {n} {n}) _≤_
  ≤-isTotalOrder _≟_ ≼-isTotalOrder = Strict.≤-isTotalOrder (Conv.<-isStrictTotalOrder₁ _ _ _≟_ ≼-isTotalOrder)

  ≤-isDecTotalOrder : IsDecTotalOrder _≈_ _≼_ 
                       {n}  IsDecTotalOrder (_≋_ {n} {n}) _≤_
  ≤-isDecTotalOrder ≼-isDecTotalOrder  = Strict.≤-isDecTotalOrder (Conv.<-isStrictTotalOrder₂ _ _ ≼-isDecTotalOrder)

------------------------------------------------------------------------
-- Bundles

≤-preorder : Poset a ℓ₁ ℓ₂    Preorder _ _ _
≤-preorder ≼-po n = record
  { isPreorder = ≤-isPreorder isPartialOrder {n = n}
  } where open Poset ≼-po

≤-poset : Poset a ℓ₁ ℓ₂    Poset _ _ _
≤-poset ≼-po n = record
  { isPartialOrder = ≤-isPartialOrder isPartialOrder {n = n}
  } where open Poset ≼-po

≤-decPoset : DecPoset a ℓ₁ ℓ₂    DecPoset _ _ _
≤-decPoset ≼-dpo n = record
  { isDecPartialOrder = ≤-isDecPartialOrder isDecPartialOrder {n = n}
  } where open DecPoset ≼-dpo

≤-totalOrder : (≼-dto : TotalOrder a ℓ₁ ℓ₂)  Decidable (TotalOrder._≈_ ≼-dto)    TotalOrder _ _ _
≤-totalOrder ≼-dto _≟_ n = record
  { isTotalOrder = ≤-isTotalOrder _≟_ isTotalOrder {n = n}
  } where open TotalOrder ≼-dto

≤-decTotalOrder : DecTotalOrder a ℓ₁ ℓ₂    DecTotalOrder _ _ _
≤-decTotalOrder ≼-dto n = record
  { isDecTotalOrder = ≤-isDecTotalOrder isDecTotalOrder {n = n}
  } where open DecTotalOrder ≼-dto

------------------------------------------------------------------------
-- Reasoning
------------------------------------------------------------------------

module ≤-Reasoning  {_≈_ : Rel A ℓ₁} {_≼_ : Rel A ℓ₂}
                    (≼-po : IsPartialOrder _≈_ _≼_)
                    (n : )
                    where

  open IsPartialOrder ≼-po

  open import Relation.Binary.Reasoning.Base.Triple
    (≤-isPreorder ≼-po {n})
    (<-asym isEquivalence ≤-resp-≈ antisym)
    (<-trans ≼-po)
    (<-resp₂ isEquivalence ≤-resp-≈)
    <⇒≤
    (<-transˡ ≼-po)
    (<-transʳ ≼-po)
    public