------------------------------------------------------------------------
-- The Agda standard library
--
-- Vector equality over propositional equality
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Vec.Relation.Binary.Equality.Propositional {a} {A : Set a} where

open import Data.Nat.Base using (; zero; suc; _+_)
open import Data.Vec.Base using (Vec)
open import Data.Vec.Relation.Binary.Pointwise.Inductive
  using (Pointwise-≡⇒≡; ≡⇒Pointwise-≡)
import Data.Vec.Relation.Binary.Equality.Setoid as SEq
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
open import Relation.Binary.PropositionalEquality.Properties using (setoid)

------------------------------------------------------------------------
-- Publically re-export everything from setoid equality

open SEq (setoid A) public

------------------------------------------------------------------------
-- ≋ is propositional

≋⇒≡ :  {n} {xs ys : Vec A n}  xs  ys  xs  ys
≋⇒≡ = Pointwise-≡⇒≡

≡⇒≋ :  {n} {xs ys : Vec A n}  xs  ys  xs  ys
≡⇒≋ = ≡⇒Pointwise-≡

-- See also Data.Vec.Relation.Binary.Equality.Propositional.WithK.≋⇒≅.