------------------------------------------------------------------------
-- The Agda standard library
--
-- Propertiers of any for containers
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Container.Relation.Unary.Any.Properties where

open import Algebra.Bundles using (CommutativeSemiring)
open import Data.Product.Base using (; _×_; ∃₂; _,_; proj₂)
open import Data.Product.Properties using (Σ-≡,≡→≡)
open import Data.Product.Function.NonDependent.Propositional using (_×-cong_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_])
open import Function.Base using (_∘_; _∘′_; id; flip; _$_)
open import Function.Bundles using (_↔_; mk↔ₛ′; Inverse)
open import Function.Properties.Inverse using (↔-refl)
open import Function.Properties.Inverse.HalfAdjointEquivalence using (_≃_; ↔⇒≃)
open import Function.Related.Propositional as Related using (Related; SK-sym)
open import Function.Related.TypeIsomorphisms
  using (×-⊎-commutativeSemiring; ∃∃↔∃∃; Σ-assoc; ×-comm)
open import Level using (Level; _⊔_)
open import Relation.Unary using (Pred ; _∪_ ; _∩_)
open import Relation.Binary.Core using (REL)
open import Relation.Binary.PropositionalEquality.Core as 
  using (_≡_; _≗_; refl)
open import Relation.Binary.PropositionalEquality.Properties as 

private
  module ×⊎ {k } = CommutativeSemiring (×-⊎-commutativeSemiring k )


open import Data.Container.Core
import Data.Container.Combinator as C
open import Data.Container.Combinator.Properties
open import Data.Container.Related
open import Data.Container.Relation.Unary.Any as Any using (; any)
open import Data.Container.Membership

module _ {s p} (C : Container s p) {x} {X : Set x} {} {P : Pred X } where

-- ◇ can be unwrapped to reveal the Σ type

  ↔Σ :  {xs :  C  X}   C P xs   λ p  P (proj₂ xs p)
  ↔Σ {xs} = mk↔ₛ′ ◇.proof any  _  refl)  _  refl)

-- ◇ can be expressed using _∈_.

  ↔∈ :  {xs :  C  X}   C P xs  ( λ x  x  xs × P x)
  ↔∈ {xs} = mk↔ₛ′ to from to∘from  _  refl) where

    to :  C P xs   λ x  x  xs × P x
    to (any (p , Px)) = (proj₂ xs p , (any (p , refl)) , Px)

    from : ( λ x  x  xs × P x)   C P xs
    from (.(proj₂ xs p) , (any (p , refl)) , Px) = any (p , Px)

    to∘from : to  from  id
    to∘from (.(proj₂ xs p) , any (p , refl) , Px) = refl

module _ {s p} {C : Container s p} {x} {X : Set x}
         {ℓ₁ ℓ₂} {P₁ : Pred X ℓ₁} {P₂ : Pred X ℓ₂} where
-- ◇ is a congruence for bag and set equality and related preorders.

  cong :  {k} {xs₁ xs₂ :  C  X} 
         (∀ x  Related k (P₁ x) (P₂ x))  xs₁ ≲[ k ] xs₂ 
         Related k ( C P₁ xs₁) ( C P₂ xs₂)
  cong {k} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ =
     C P₁ xs₁               ↔⟨ ↔∈ C 
    ( λ x  x  xs₁ × P₁ x) ∼⟨ Σ.cong ↔-refl (xs₁≈xs₂ ×-cong P₁↔P₂ _) 
    ( λ x  x  xs₂ × P₂ x) ↔⟨ SK-sym (↔∈ C) 
     C P₂ xs₂               
    where open Related.EquationalReasoning

-- Nested occurrences of ◇ can sometimes be swapped.

module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
         {x y} {X : Set x} {Y : Set y} {r} {P : REL X Y r} where

  swap : {xs :  C₁  X} {ys :  C₂  Y} 
         let  :  {s p} {C : Container s p} {x} {X : Set x} {}   C  X  Pred X   Set (p  )
              = λ {_} {_}  flip ( _) in
          xs ( ys  P)   ys ( xs  flip P)
  swap {xs} {ys} =
     _  x   _ (P x) ys) xs                ↔⟨ ↔∈ C₁ 
    ( λ x  x  xs ×  _ (P x) ys)            ↔⟨ Σ.cong ↔-refl $ Σ.cong ↔-refl $ ↔∈ C₂ 
    ( λ x  x  xs ×  λ y  y  ys × P x y)  ↔⟨ Σ.cong ↔-refl  {x}  ∃∃↔∃∃  _ y  y  ys × P x y)) 
    (∃₂ λ x y  x  xs × y  ys × P x y)       ↔⟨ ∃∃↔∃∃  x y  x  xs × y  ys × P x y) 
    (∃₂ λ y x  x  xs × y  ys × P x y)       ↔⟨ Σ.cong ↔-refl  {y}  Σ.cong ↔-refl  {x} 
      (x  xs × y  ys × P x y)                     ↔⟨ SK-sym Σ-assoc 
      ((x  xs × y  ys) × P x y)                   ↔⟨ Σ.cong (×-comm _ _) ↔-refl 
      ((y  ys × x  xs) × P x y)                   ↔⟨ Σ-assoc 
      (y  ys × x  xs × P x y)                     )) 
    (∃₂ λ y x  y  ys × x  xs × P x y)       ↔⟨ Σ.cong ↔-refl  {y}  ∃∃↔∃∃ {B = y  ys}  x _  x  xs × P x y)) 
    ( λ y  y  ys ×  λ x  x  xs × P x y)  ↔⟨ Σ.cong ↔-refl (Σ.cong ↔-refl (SK-sym (↔∈ C₁))) 
    ( λ y  y  ys ×  _ (flip P y) xs)       ↔⟨ SK-sym (↔∈ C₂) 
     _  y   _ (flip P y) xs) ys           
    where open Related.EquationalReasoning

-- Nested occurrences of ◇ can sometimes be flattened.

module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
         {x} {X : Set x} {} (P : Pred X ) where

  flatten :  (xss :  C₁  ( C₂  X)) 
             C₁ ( C₂ P) xss 
             (C₁ C.∘ C₂) P (Inverse.from (Composition.correct C₁ C₂) xss)
  flatten xss = mk↔ₛ′ t f  _  refl)  _  refl) where

    ◇₁ =  C₁; ◇₂ =  C₂; ◇₁₂ =  (C₁ C.∘ C₂)
    open Inverse

    t : ◇₁ (◇₂ P) xss  ◇₁₂ P (from (Composition.correct C₁ C₂) xss)
    t (any (p₁ , (any (p₂ , p)))) = any (any (p₁ , p₂) , p)

    f : ◇₁₂ P (from (Composition.correct C₁ C₂) xss)  ◇₁ (◇₂ P) xss
    f (any (any (p₁ , p₂) , p)) = any (p₁ , any (p₂ , p))

-- Sums commute with ◇ (for a fixed instance of a given container).

module _ {s p} {C : Container s p} {x} {X : Set x}
         { ℓ′} {P : Pred X } {Q : Pred X ℓ′} where

  ◇⊎↔⊎◇ :  {xs :  C  X}   C (P  Q) xs  ( C P xs   C Q xs)
  ◇⊎↔⊎◇ {xs} = mk↔ₛ′ to from to∘from from∘to
    where
    to :  C  x  P x  Q x) xs   C P xs   C Q xs
    to (any (pos , inj₁ p)) = inj₁ (any (pos , p))
    to (any (pos , inj₂ q)) = inj₂ (any (pos , q))

    from :  C P xs   C Q xs   C  x  P x  Q x) xs
    from = [ Any.map₂ inj₁ , Any.map₂ inj₂ ]

    from∘to : from  to  id
    from∘to (any (pos , inj₁ p)) = refl
    from∘to (any (pos , inj₂ q)) = refl

    to∘from : to  from  id
    to∘from = [  _  refl) ,  _  refl) ]

-- Products "commute" with ◇.

module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
         {x y} {X : Set x} {Y : Set y} { ℓ′} {P : Pred X } {Q : Pred Y ℓ′} where

  ×◇↔◇◇× :  {xs :  C₁  X} {ys :  C₂  Y} 
            C₁  x   C₂  y  P x × Q y) ys) xs  ( C₁ P xs ×  C₂ Q ys)
  ×◇↔◇◇× {xs} {ys} = mk↔ₛ′ to from  _  refl)  _  refl)
    where
    ◇₁ =  C₁; ◇₂ =  C₂

    to : ◇₁  x  ◇₂  y  P x × Q y) ys) xs  ◇₁ P xs × ◇₂ Q ys
    to (any (p₁ , any (p₂ , p , q))) = (any (p₁ , p) , any (p₂ , q))

    from : ◇₁ P xs × ◇₂ Q ys  ◇₁  x  ◇₂  y  P x × Q y) ys) xs
    from (any (p₁ , p) , any (p₂ , q)) = any (p₁ , any (p₂ , p , q))

-- map can be absorbed by the predicate.

module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y}
         {} (P : Pred Y ) where

  map↔∘ :  {xs :  C  X} (f : X  Y)   C P (map f xs)   C (P ∘′ f) xs
  map↔∘ {xs} f =
    C P (map f xs)          ↔⟨ ↔Σ C 
    (P ∘′ proj₂ (map f xs)) ≡⟨⟩
    (P ∘′ f ∘′ proj₂ xs)    ↔⟨ SK-sym (↔Σ C) 
    C (P ∘′ f) xs           
   where open Related.EquationalReasoning

-- Membership in a mapped container can be expressed without reference
-- to map.

module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y}
         {} (P : Pred Y ) where

  ∈map↔∈×≡ :  {f : X  Y} {xs :  C  X} {y} 
             y  map f xs  ( λ x  x  xs × y  f x)
  ∈map↔∈×≡ {f = f} {xs} {y} =
    y  map f xs               ↔⟨ map↔∘ C (y ≡_) f 
     C  x  y  f x) xs     ↔⟨ ↔∈ C 
      x  x  xs × y  f x) 
    where open Related.EquationalReasoning

-- map is a congruence for bag and set equality and related preorders.

module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y}
         {} (P : Pred Y ) where

  map-cong :  {k} {f₁ f₂ : X  Y} {xs₁ xs₂ :  C  X} 
             f₁  f₂  xs₁ ≲[ k ] xs₂ 
             map f₁ xs₁ ≲[ k ] map f₂ xs₂
  map-cong {f₁ = f₁} {f₂} {xs₁} {xs₂} f₁≗f₂ xs₁≈xs₂ {x} =
    x  map f₁ xs₁           ↔⟨ map↔∘ C (_≡_ x) f₁ 
     C  y  x  f₁ y) xs₁ ∼⟨ cong (Related.↔⇒  helper) xs₁≈xs₂ 
     C  y  x  f₂ y) xs₂ ↔⟨ SK-sym (map↔∘ C (_≡_ x) f₂) 
    x  map f₂ xs₂           
    where
    open Related.EquationalReasoning
    helper :  y  (x  f₁ y)  (x  f₂ y)
    helper y rewrite f₁≗f₂ y = ↔-refl

-- Uses of linear morphisms can be removed.

module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
         {x} {X : Set x} {} (P : Pred X ) where

  remove-linear :  {xs :  C₁  X} (m : C₁  C₂)   C₂ P ( m ⟫⊸ xs)   C₁ P xs
  remove-linear {xs} m = mk↔ₛ′ t f t∘f f∘t
    where
    open _≃_
    open ≡.≡-Reasoning

    position⊸m :  {s}  Position C₂ (shape⊸ m s)  Position C₁ s
    position⊸m = ↔⇒≃ (position⊸ m)

    ◇₁ =  C₁; ◇₂ =  C₂

    t : ◇₂ P ( m ⟫⊸ xs)  ◇₁ P xs
    t = Any.map₁ (_⊸_.morphism m)

    f : ◇₁ P xs  ◇₂ P ( m ⟫⊸ xs)
    f (any (x , p)) =
      any $ from position⊸m x
          , ≡.subst (P ∘′ proj₂ xs) (≡.sym (right-inverse-of position⊸m _)) p

    f∘t : f  t  id
    f∘t (any (p₂ , p)) = ≡.cong any $ Σ-≡,≡→≡
      ( left-inverse-of position⊸m p₂
      , (≡.subst (P  proj₂ xs  to position⊸m)
           (left-inverse-of position⊸m p₂)
           (≡.subst (P  proj₂ xs)
              (≡.sym (right-inverse-of position⊸m
                        (to position⊸m p₂)))
              p)                                                ≡⟨ ≡.subst-∘ (left-inverse-of position⊸m _) 

         ≡.subst (P  proj₂ xs)
           (≡.cong (to position⊸m)
              (left-inverse-of position⊸m p₂))
           (≡.subst (P  proj₂ xs)
              (≡.sym (right-inverse-of position⊸m
                        (to position⊸m p₂)))
              p)                                                ≡⟨ ≡.cong  eq  ≡.subst (P  proj₂ xs) eq
                                                                                    (≡.subst (P  proj₂ xs)
                                                                                       (≡.sym (right-inverse-of position⊸m _)) _))
                                                                     (_≃_.left-right position⊸m _) 
         ≡.subst (P  proj₂ xs)
           (right-inverse-of position⊸m
              (to position⊸m p₂))
           (≡.subst (P  proj₂ xs)
              (≡.sym (right-inverse-of position⊸m
                        (to position⊸m p₂)))
              p)                                                ≡⟨ ≡.subst-subst (≡.sym (right-inverse-of position⊸m _)) 

         ≡.subst (P  proj₂ xs)
           (≡.trans
              (≡.sym (right-inverse-of position⊸m
                        (to position⊸m p₂)))
              (right-inverse-of position⊸m
                 (to position⊸m p₂)))
           p                                                    ≡⟨ ≡.cong  eq  ≡.subst (P  proj₂ xs) eq p)
                                                                     (≡.trans-symˡ (right-inverse-of position⊸m _)) 

         ≡.subst (P  proj₂ xs) ≡.refl p                        ≡⟨⟩

        p                                                       )
      )

    t∘f : t  f  id
    t∘f (any (p₁ , p)) = ≡.cong any $ Σ-≡,≡→≡
      ( right-inverse-of position⊸m p₁
      , (≡.subst (P  proj₂ xs)
           (right-inverse-of position⊸m p₁)
           (≡.subst (P  proj₂ xs)
              (≡.sym (right-inverse-of position⊸m p₁))
              p)                                                ≡⟨ ≡.subst-subst (≡.sym (right-inverse-of position⊸m _)) 

         ≡.subst (P  proj₂ xs)
           (≡.trans
              (≡.sym (right-inverse-of position⊸m p₁))
              (right-inverse-of position⊸m p₁))
           p                                                    ≡⟨ ≡.cong  eq  ≡.subst (P  proj₂ xs) eq p)
                                                                     (≡.trans-symˡ (right-inverse-of position⊸m _)) 
         ≡.subst (P  proj₂ xs) ≡.refl p                        ≡⟨⟩

        p                                                       )
      )

-- Linear endomorphisms are identity functions if bag equality is used.

module _ {s p} {C : Container s p} {x} {X : Set x} where

  linear-identity :  {xs :  C  X} (m : C  C)   m ⟫⊸ xs ≲[ bag ] xs
  linear-identity {xs} m {x} =
    x   m ⟫⊸ xs  ↔⟨ remove-linear (_≡_ x) m 
    x         xs  
    where open Related.EquationalReasoning

-- If join can be expressed using a linear morphism (in a certain
-- way), then it can be absorbed by the predicate.

module _ {s₁ s₂ s₃ p₁ p₂ p₃}
         {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃}
         {x} {X : Set x} {} (P : Pred X ) where

  join↔◇ : (join′ : (C₁ C.∘ C₂)  C₃) (xss :  C₁  ( C₂  X)) 
           let join :  {X}   C₁  ( C₂  X)   C₃  X
               join = λ {_}   join′ ⟫⊸ 
                      (Inverse.from (Composition.correct C₁ C₂)) in
            C₃ P (join xss)   C₁ ( C₂ P) xss
  join↔◇ join xss =
     C₃ P ( join ⟫⊸ xss′) ↔⟨ remove-linear P join 
     (C₁ C.∘ C₂) P xss′    ↔⟨ SK-sym $ flatten P xss 
     C₁ ( C₂ P) xss       
    where
    open Related.EquationalReasoning
    xss′ = Inverse.from (Composition.correct C₁ C₂) xss