{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Unary.Relation.Binary.Equality where
open import Level using (Level)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Unary using (Pred; _≐_; _≐′_)
open import Relation.Unary.Properties
private
variable
a ℓ : Level
A : Set a
≐-isEquivalence : IsEquivalence {A = Pred A ℓ} _≐_
≐-isEquivalence = record
{ refl = ≐-refl
; sym = ≐-sym
; trans = ≐-trans
}
≐′-isEquivalence : IsEquivalence {A = Pred A ℓ} _≐′_
≐′-isEquivalence = record
{ refl = ≐′-refl
; sym = ≐′-sym
; trans = ≐′-trans
}
≐-setoid : ∀ {a} (A : Set a) ℓ → Setoid _ _
≐-setoid A ℓ = record
{ isEquivalence = ≐-isEquivalence {A = A} {ℓ}
}
≐′-setoid : ∀ {a} (A : Set a) ℓ → Setoid _ _
≐′-setoid A ℓ = record
{ isEquivalence = ≐′-isEquivalence {A = A} {ℓ}
}