{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (Setoid)
module Data.List.Relation.Ternary.Appending.Setoid.Properties
{c l} (S : Setoid c l)
where
open import Data.List.Base as List using (List; [])
import Data.List.Properties as List
open import Data.List.Relation.Binary.Pointwise.Base using (Pointwise; [])
import Data.List.Relation.Ternary.Appending.Properties as Appendingₚ
open import Data.Product.Base using (∃-syntax; _×_; _,_)
open import Function.Base using (id)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.PropositionalEquality.Core using (refl)
open import Relation.Binary.Construct.Composition using (_;_)
open Setoid S renaming (Carrier to A)
open import Relation.Binary.Properties.Setoid S using (≈;≈⇒≈; ≈⇒≈;≈)
open import Data.List.Relation.Ternary.Appending.Setoid S
private
variable
as bs cs ds : List A
open Appendingₚ public
using (conicalˡ; conicalʳ)
[]++⁻¹ : Appending [] bs cs → Pointwise _≈_ bs cs
[]++⁻¹ ([]++ rs) = rs
++[]⁻¹ : Appending as [] cs → Pointwise _≈_ as cs
++[]⁻¹ {as} {cs} ls with break ls
... | cs₁ , cs₂ , refl , pw , []
rewrite List.++-identityʳ cs₁
= pw
respʳ-≋ : ∀ {cs′} → Appending as bs cs → Pointwise _≈_ cs cs′ →
Appending as bs cs′
respʳ-≋ = Appendingₚ.respʳ-≋ trans trans
respˡ-≋ : ∀ {as′ bs′} → Pointwise _≈_ as′ as → Pointwise _≈_ bs′ bs →
Appending as bs cs → Appending as′ bs′ cs
respˡ-≋ = Appendingₚ.respˡ-≋ trans trans
through→ :
∃[ xs ] Pointwise _≈_ as xs × Appending xs bs cs →
∃[ ys ] Appending as bs ys × Pointwise _≈_ ys cs
through→ = Appendingₚ.through→ ≈⇒≈;≈ id
through← :
∃[ ys ] Appending as bs ys × Pointwise _≈_ ys cs →
∃[ xs ] Pointwise _≈_ as xs × Appending xs bs cs
through← = Appendingₚ.through← ≈;≈⇒≈ id
assoc→ :
∃[ xs ] Appending as bs xs × Appending xs cs ds →
∃[ ys ] Appending bs cs ys × Appending as ys ds
assoc→ = Appendingₚ.assoc→ ≈⇒≈;≈ id ≈;≈⇒≈