------------------------------------------------------------------------
-- The Agda standard library
--
-- Some Vec-related properties
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Vec.Properties where

open import Algebra.Definitions
open import Data.Bool.Base using (true; false)
open import Data.Fin.Base as Fin
  using (Fin; zero; suc; toℕ; fromℕ<; _↑ˡ_; _↑ʳ_)
open import Data.List.Base as List using (List)
import Data.List.Properties as List
open import Data.Nat.Base using (; zero; suc; _+_; _≤_; _<_; s≤s; pred; s<s⁻¹; _≥_;
  s≤s⁻¹; z≤n)
open import Data.Nat.Properties
  using (+-assoc; m≤n⇒m≤1+n; m≤m+n; ≤-refl; ≤-trans; ≤-irrelevant; ≤⇒≤″; suc-injective; +-comm; +-suc; +-identityʳ)
open import Data.Product.Base as Product
  using (_×_; _,_; proj₁; proj₂; <_,_>; uncurry)
open import Data.Sum.Base using ([_,_]′)
open import Data.Sum.Properties using ([,]-map)
open import Data.Vec.Base
open import Data.Vec.Relation.Binary.Equality.Cast as VecCast
  using (_≈[_]_; ≈-sym; ≈-cong′; module CastReasoning)
open import Function.Base using (_∘_; id; _$_; const; _ˢ_; flip)
open import Function.Bundles using (_↔_; mk↔ₛ′)
open import Level using (Level)
open import Relation.Binary.Definitions using (DecidableEquality)
open import Relation.Binary.PropositionalEquality.Core
  using (_≡_; _≢_; _≗_; refl; sym; trans; cong; cong₂; subst)
open import Relation.Binary.PropositionalEquality.Properties
  using (module ≡-Reasoning)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary.Decidable.Core using (Dec; does; yes; _×-dec_; map′)
open import Relation.Nullary.Negation.Core using (contradiction)
import Data.Nat.GeneralisedArithmetic as 

private
  m+n+o≡n+[m+o] :  m n o  m + n + o  n + (m + o)
  m+n+o≡n+[m+o] m n o = trans (cong (_+ o) (+-comm m n)) (+-assoc n m o)

private
  variable
    a b c d p : Level
    A B C D : Set a
    w x y z : A
    m n o : 
    ws xs ys zs : Vec A n

------------------------------------------------------------------------
-- Properties of propositional equality over vectors

∷-injectiveˡ : x  xs  y  ys  x  y
∷-injectiveˡ refl = refl

∷-injectiveʳ : x  xs  y  ys  xs  ys
∷-injectiveʳ refl = refl

∷-injective : x  xs  y  ys  x  y × xs  ys
∷-injective refl = refl , refl

≡-dec : DecidableEquality A  DecidableEquality (Vec A n)
≡-dec _≟_ []       []       = yes refl
≡-dec _≟_ (x  xs) (y  ys) = map′ (uncurry (cong₂ _∷_))
  ∷-injective (x  y ×-dec ≡-dec _≟_ xs ys)

------------------------------------------------------------------------
-- _[_]=_

[]=-injective :  {i}  xs [ i ]= x  xs [ i ]= y  x  y
[]=-injective here          here          = refl
[]=-injective (there xsᵢ≡x) (there xsᵢ≡y) = []=-injective xsᵢ≡x xsᵢ≡y

-- See also Data.Vec.Properties.WithK.[]=-irrelevant.

------------------------------------------------------------------------
-- take

unfold-take :  n x (xs : Vec A (n + m))  take (suc n) (x  xs)  x  take n xs
unfold-take n x xs = refl

take-zipWith :  (f : A  B  C) 
               (xs : Vec A (m + n)) (ys : Vec B (m + n)) 
               take m (zipWith f xs ys)  zipWith f (take m xs) (take m ys)
take-zipWith {m = zero}  f xs       ys       = refl
take-zipWith {m = suc m} f (x  xs) (y  ys) = cong (f x y ∷_) (take-zipWith f xs ys)

take-map :  (f : A  B) (m : ) (xs : Vec A (m + n)) 
           take m (map f xs)  map f (take m xs)
take-map f zero    xs       = refl
take-map f (suc m) (x  xs) = cong (f x ∷_) (take-map f m xs)

------------------------------------------------------------------------
-- drop

unfold-drop :  n x (xs : Vec A (n + m)) 
              drop (suc n) (x  xs)  drop n xs
unfold-drop n x xs = refl

drop-zipWith : (f : A  B  C) 
               (xs : Vec A (m + n)) (ys : Vec B (m + n)) 
               drop m (zipWith f xs ys)  zipWith f (drop m xs) (drop m ys)
drop-zipWith {m = zero}  f   xs       ys     = refl
drop-zipWith {m = suc m} f (x  xs) (y  ys) = drop-zipWith f xs ys

drop-map :  (f : A  B) (m : ) (xs : Vec A (m + n)) 
           drop m (map f xs)  map f (drop m xs)
drop-map f zero    xs       = refl
drop-map f (suc m) (x  xs) = drop-map f m xs

------------------------------------------------------------------------
-- take and drop together

take++drop≡id :  (m : ) (xs : Vec A (m + n))  take m xs ++ drop m xs  xs
take++drop≡id zero    xs       = refl
take++drop≡id (suc m) (x  xs) = cong (x ∷_) (take++drop≡id m xs)

------------------------------------------------------------------------
-- truncate

truncate-refl : (xs : Vec A n)  truncate ≤-refl xs  xs
truncate-refl []       = refl
truncate-refl (x  xs) = cong (x ∷_) (truncate-refl xs)

truncate-trans :  {p} (m≤n : m  n) (n≤p : n  p) (xs : Vec A p) 
                 truncate (≤-trans m≤n n≤p) xs  truncate m≤n (truncate n≤p xs)
truncate-trans z≤n       n≤p       xs = refl
truncate-trans (s≤s m≤n) (s≤s n≤p) (x  xs) = cong (x ∷_) (truncate-trans m≤n n≤p xs)

truncate-irrelevant : (m≤n₁ m≤n₂ : m  n)  truncate {A = A} m≤n₁  truncate m≤n₂
truncate-irrelevant m≤n₁ m≤n₂ xs = cong  m≤n  truncate m≤n xs) (≤-irrelevant m≤n₁ m≤n₂)

truncate≡take : (m≤n : m  n) (xs : Vec A n) .(eq : n  m + o) 
                truncate m≤n xs  take m (cast eq xs)
truncate≡take z≤n       _        eq = refl
truncate≡take (s≤s m≤n) (x  xs) eq = cong (x ∷_) (truncate≡take m≤n xs (suc-injective eq))

take≡truncate :  m (xs : Vec A (m + n)) 
                take m xs  truncate (m≤m+n m n) xs
take≡truncate zero    _        = refl
take≡truncate (suc m) (x  xs) = cong (x ∷_) (take≡truncate m xs)

------------------------------------------------------------------------
-- pad

padRight-refl : (a : A) (xs : Vec A n)  padRight ≤-refl a xs  xs
padRight-refl a []       = refl
padRight-refl a (x  xs) = cong (x ∷_) (padRight-refl a xs)

padRight-replicate : (m≤n : m  n) (a : A)  replicate n a  padRight m≤n a (replicate m a)
padRight-replicate z≤n       a = refl
padRight-replicate (s≤s m≤n) a = cong (a ∷_) (padRight-replicate m≤n a)

padRight-trans :  {p} (m≤n : m  n) (n≤p : n  p) (a : A) (xs : Vec A m) 
            padRight (≤-trans m≤n n≤p) a xs  padRight n≤p a (padRight m≤n a xs)
padRight-trans z≤n       n≤p       a []       = padRight-replicate n≤p a
padRight-trans (s≤s m≤n) (s≤s n≤p) a (x  xs) = cong (x ∷_) (padRight-trans m≤n n≤p a xs)

------------------------------------------------------------------------
-- truncate and padRight together

truncate-padRight : (m≤n : m  n) (a : A) (xs : Vec A m) 
                    truncate m≤n (padRight m≤n a xs)  xs
truncate-padRight z≤n       a []       = refl
truncate-padRight (s≤s m≤n) a (x  xs) = cong (x ∷_) (truncate-padRight m≤n a xs)

------------------------------------------------------------------------
-- lookup

[]=⇒lookup :  {i}  xs [ i ]= x  lookup xs i  x
[]=⇒lookup here            = refl
[]=⇒lookup (there xs[i]=x) = []=⇒lookup xs[i]=x

lookup⇒[]= :  (i : Fin n) xs  lookup xs i  x  xs [ i ]= x
lookup⇒[]= zero    (_  _)  refl = here
lookup⇒[]= (suc i) (_  xs) p    = there (lookup⇒[]= i xs p)

[]=↔lookup :  {i}  xs [ i ]= x  lookup xs i  x
[]=↔lookup {xs = ys} {i = i} =
  mk↔ₛ′ []=⇒lookup (lookup⇒[]= i ys) ([]=⇒lookup∘lookup⇒[]= _ i) lookup⇒[]=∘[]=⇒lookup
  where
  lookup⇒[]=∘[]=⇒lookup :  {i} (p : xs [ i ]= x) 
                          lookup⇒[]= i xs ([]=⇒lookup p)  p
  lookup⇒[]=∘[]=⇒lookup here      = refl
  lookup⇒[]=∘[]=⇒lookup (there p) = cong there (lookup⇒[]=∘[]=⇒lookup p)

  []=⇒lookup∘lookup⇒[]= :  xs (i : Fin n) (p : lookup xs i  x) 
                          []=⇒lookup (lookup⇒[]= i xs p)  p
  []=⇒lookup∘lookup⇒[]= (x  xs) zero    refl = refl
  []=⇒lookup∘lookup⇒[]= (x  xs) (suc i) p    = []=⇒lookup∘lookup⇒[]= xs i p

lookup-truncate : (m≤n : m  n) (xs : Vec A n) (i : Fin m) 
                  lookup (truncate m≤n xs) i  lookup xs (Fin.inject≤ i m≤n)
lookup-truncate (s≤s m≤m+n) (_  _)  zero    = refl
lookup-truncate (s≤s m≤m+n) (_  xs) (suc i) = lookup-truncate m≤m+n xs i

lookup-take-inject≤ : (xs : Vec A (m + n)) (i : Fin m) 
                      lookup (take m xs) i  lookup xs (Fin.inject≤ i (m≤m+n m n))
lookup-take-inject≤ {m = m} {n = n} xs i = begin
  lookup (take _ xs) i
    ≡⟨ cong  ys  lookup ys i) (take≡truncate m xs) 
  lookup (truncate _ xs) i
    ≡⟨ lookup-truncate (m≤m+n m n) xs i 
  lookup xs (Fin.inject≤ i (m≤m+n m n))
     where open ≡-Reasoning

------------------------------------------------------------------------
-- updateAt (_[_]%=_)

-- (+) updateAt i actually updates the element at index i.

updateAt-updates :  (i : Fin n) {f : A  A} (xs : Vec A n) 
                   xs [ i ]= x  (updateAt xs i f) [ i ]= f x
updateAt-updates zero    (x  xs) here        = here
updateAt-updates (suc i) (x  xs) (there loc) = there (updateAt-updates i xs loc)

-- (-) updateAt i does not touch the elements at other indices.

updateAt-minimal :  (i j : Fin n) {f : A  A} (xs : Vec A n) 
                   i  j  xs [ i ]= x  (updateAt xs j f) [ i ]= x
updateAt-minimal zero    zero    (x  xs) 0≢0 here        = contradiction refl 0≢0
updateAt-minimal zero    (suc j) (x  xs) _   here        = here
updateAt-minimal (suc i) zero    (x  xs) _   (there loc) = there loc
updateAt-minimal (suc i) (suc j) (x  xs) i≢j (there loc) =
  there (updateAt-minimal i j xs (i≢j  cong suc) loc)

-- The other properties are consequences of (+) and (-).
-- We spell the most natural properties out.
-- Direct inductive proofs are in most cases easier than just using
-- the defining properties.

-- In the explanations, we make use of shorthand  f = g ↾ x
-- meaning that f and g agree locally at point x, i.e.  f x ≡ g x.

-- updateAt i  is a morphism from the monoid of endofunctions  A → A
-- to the monoid of endofunctions  Vec A n → Vec A n

-- 1a. local identity:  f = id ↾ (lookup xs i)
--             implies  updateAt i f = id ↾ xs

updateAt-id-local :  (i : Fin n) {f : A  A} (xs : Vec A n) 
                    f (lookup xs i)  lookup xs i 
                    updateAt xs i f  xs
updateAt-id-local zero    (x  xs) eq = cong (_∷ xs) eq
updateAt-id-local (suc i) (x  xs) eq = cong (x ∷_) (updateAt-id-local i xs eq)

-- 1b. identity:  updateAt i id ≗ id

updateAt-id :  (i : Fin n) (xs : Vec A n)  updateAt xs i id  xs
updateAt-id i xs = updateAt-id-local i xs refl

-- 2a. local composition:  f ∘ g = h ↾ (lookup xs i)
--                implies  updateAt i f ∘ updateAt i g = updateAt i h ↾ xs

updateAt-updateAt-local :  (i : Fin n) {f g h : A  A} (xs : Vec A n) 
                          f (g (lookup xs i))  h (lookup xs i) 
                          updateAt (updateAt xs i g) i f  updateAt xs i h
updateAt-updateAt-local zero    (x  xs) fg=h = cong (_∷ xs) fg=h
updateAt-updateAt-local (suc i) (x  xs) fg=h = cong (x ∷_) (updateAt-updateAt-local i xs fg=h)

-- 2b. composition:  updateAt i f ∘ updateAt i g ≗ updateAt i (f ∘ g)

updateAt-updateAt :  (i : Fin n) {f g : A  A} (xs : Vec A n) 
                    updateAt (updateAt xs i g) i f  updateAt xs i (f  g)
updateAt-updateAt i xs = updateAt-updateAt-local i xs refl

-- 3. congruence:  updateAt i  is a congruence wrt. extensional equality.

-- 3a.  If    f = g ↾ (lookup xs i)
--      then  updateAt i f = updateAt i g ↾ xs

updateAt-cong-local :  (i : Fin n) {f g : A  A} (xs : Vec A n) 
                      f (lookup xs i)  g (lookup xs i) 
                      updateAt xs i f  updateAt xs i g
updateAt-cong-local zero    (x  xs) f=g = cong (_∷ xs) f=g
updateAt-cong-local (suc i) (x  xs) f=g = cong (x ∷_) (updateAt-cong-local i xs f=g)

-- 3b. congruence:  f ≗ g → updateAt i f ≗ updateAt i g

updateAt-cong :  (i : Fin n) {f g : A  A}  f  g  (xs : Vec A n) 
                updateAt xs i f  updateAt xs i g
updateAt-cong i f≗g xs = updateAt-cong-local i xs (f≗g (lookup xs i))

-- The order of updates at different indices i ≢ j does not matter.

-- This a consequence of updateAt-updates and updateAt-minimal
-- but easier to prove inductively.

updateAt-commutes :  (i j : Fin n) {f g : A  A}  i  j  (xs : Vec A n) 
                    updateAt (updateAt xs j g) i f  updateAt (updateAt xs i f) j g
updateAt-commutes zero    zero    0≢0 (x  xs) = contradiction refl 0≢0
updateAt-commutes zero    (suc j) i≢j (x  xs) = refl
updateAt-commutes (suc i) zero    i≢j (x  xs) = refl
updateAt-commutes (suc i) (suc j) i≢j (x  xs) =
   cong (x ∷_) (updateAt-commutes i j (i≢j  cong suc) xs)

-- lookup after updateAt reduces.

-- For same index this is an easy consequence of updateAt-updates
-- using []=↔lookup.

lookup∘updateAt :  (i : Fin n) {f : A  A} xs 
                  lookup (updateAt xs i f) i  f (lookup xs i)
lookup∘updateAt i xs =
  []=⇒lookup (updateAt-updates i xs (lookup⇒[]= i _ refl))

-- For different indices it easily follows from updateAt-minimal.

lookup∘updateAt′ :  (i j : Fin n) {f : A  A}  i  j   xs 
                   lookup (updateAt xs j f) i  lookup xs i
lookup∘updateAt′ i j xs i≢j =
  []=⇒lookup (updateAt-minimal i j i≢j xs (lookup⇒[]= i _ refl))

-- Aliases for notation _[_]%=_

[]%=-id :  (xs : Vec A n) (i : Fin n)  xs [ i ]%= id  xs
[]%=-id xs i = updateAt-id i xs

[]%=-∘ :  (xs : Vec A n) (i : Fin n) {f g : A  A} 
      xs [ i ]%= f
         [ i ]%= g
     xs [ i ]%= g  f
[]%=-∘ xs i = updateAt-updateAt i xs


------------------------------------------------------------------------
-- _[_]≔_ (update)
--
-- _[_]≔_ is defined in terms of updateAt, and all of its properties
-- are special cases of the ones for updateAt.

[]≔-idempotent :  (xs : Vec A n) (i : Fin n) 
                  (xs [ i ]≔ x) [ i ]≔ y  xs [ i ]≔ y
[]≔-idempotent xs i = updateAt-updateAt i xs

[]≔-commutes :  (xs : Vec A n) (i j : Fin n)  i  j 
                (xs [ i ]≔ x) [ j ]≔ y  (xs [ j ]≔ y) [ i ]≔ x
[]≔-commutes xs i j i≢j = updateAt-commutes j i (i≢j  sym) xs

[]≔-updates :  (xs : Vec A n) (i : Fin n)  (xs [ i ]≔ x) [ i ]= x
[]≔-updates xs i = updateAt-updates i xs (lookup⇒[]= i xs refl)

[]≔-minimal :  (xs : Vec A n) (i j : Fin n)  i  j 
              xs [ i ]= x  (xs [ j ]≔ y) [ i ]= x
[]≔-minimal xs i j i≢j loc = updateAt-minimal i j xs i≢j loc

[]≔-lookup :  (xs : Vec A n) (i : Fin n)  xs [ i ]≔ lookup xs i  xs
[]≔-lookup xs i = updateAt-id-local i xs refl

[]≔-++-↑ˡ :  (xs : Vec A m) (ys : Vec A n) i 
            (xs ++ ys) [ i ↑ˡ n ]≔ x  (xs [ i ]≔ x) ++ ys
[]≔-++-↑ˡ (x  xs) ys zero    = refl
[]≔-++-↑ˡ (x  xs) ys (suc i) =
  cong (x ∷_) $ []≔-++-↑ˡ xs ys i

[]≔-++-↑ʳ :  (xs : Vec A m) (ys : Vec A n) i 
            (xs ++ ys) [ m ↑ʳ i ]≔ y  xs ++ (ys [ i ]≔ y)
[]≔-++-↑ʳ {m = zero}     []    (y  ys) i = refl
[]≔-++-↑ʳ {m = suc n} (x  xs) (y  ys) i = cong (x ∷_) $ []≔-++-↑ʳ xs (y  ys) i

lookup∘update :  (i : Fin n) (xs : Vec A n) x 
                lookup (xs [ i ]≔ x) i  x
lookup∘update i xs x = lookup∘updateAt i xs

lookup∘update′ :  {i j}  i  j   (xs : Vec A n) y 
                 lookup (xs [ j ]≔ y) i  lookup xs i
lookup∘update′ {i = i} {j} i≢j xs y = lookup∘updateAt′ i j i≢j xs

------------------------------------------------------------------------
-- cast

open VecCast public
  using (cast-is-id; cast-trans)

subst-is-cast : (eq : m  n) (xs : Vec A m)  subst (Vec A) eq xs  cast eq xs
subst-is-cast refl xs = sym (cast-is-id refl xs)

cast-sym : .(eq : m  n) {xs : Vec A m} {ys : Vec A n} 
           cast eq xs  ys  cast (sym eq) ys  xs
cast-sym eq {xs = []}     {ys = []}     _ = refl
cast-sym eq {xs = x  xs} {ys = y  ys} xxs[eq]≡yys =
  let x≡y , xs[eq]≡ys = ∷-injective xxs[eq]≡yys
  in cong₂ _∷_ (sym x≡y) (cast-sym (suc-injective eq) xs[eq]≡ys)

------------------------------------------------------------------------
-- map

map-id : map id  id {A = Vec A n}
map-id []       = refl
map-id (x  xs) = cong (x ∷_) (map-id xs)

map-const :  (xs : Vec A n) (y : B)  map (const y) xs  replicate n y
map-const []       _ = refl
map-const (_  xs) y = cong (y ∷_) (map-const xs y)

map-cast : (f : A  B) .(eq : m  n) (xs : Vec A m) 
           map f (cast eq xs)  cast eq (map f xs)
map-cast f _ _ = sym (≈-cong′ (map f) refl)

map-++ :  (f : A  B) (xs : Vec A m) (ys : Vec A n) 
         map f (xs ++ ys)  map f xs ++ map f ys
map-++ f []       ys = refl
map-++ f (x  xs) ys = cong (f x ∷_) (map-++ f xs ys)

map-cong :  {f g : A  B}  f  g  map {n = n} f  map g
map-cong f≗g []       = refl
map-cong f≗g (x  xs) = cong₂ _∷_ (f≗g x) (map-cong f≗g xs)

map-∘ :  (f : B  C) (g : A  B) 
        map {n = n} (f  g)  map f  map g
map-∘ f g []       = refl
map-∘ f g (x  xs) = cong (f (g x) ∷_) (map-∘ f g xs)

lookup-map :  (i : Fin n) (f : A  B) (xs : Vec A n) 
             lookup (map f xs) i  f (lookup xs i)
lookup-map zero    f (x  xs) = refl
lookup-map (suc i) f (x  xs) = lookup-map i f xs

map-updateAt :  {f : A  B} {g : A  A} {h : B  B}
               (xs : Vec A n) (i : Fin n) 
               f (g (lookup xs i))  h (f (lookup xs i)) 
               map f (updateAt xs i g)  updateAt (map f xs) i h
map-updateAt (x  xs) zero    eq = cong (_∷ _) eq
map-updateAt (x  xs) (suc i) eq = cong (_ ∷_) (map-updateAt xs i eq)

map-insertAt :  (f : A  B) (x : A) (xs : Vec A n) (i : Fin (suc n)) 
             map f (insertAt xs i x)  insertAt (map f xs) i (f x)
map-insertAt f _ []        Fin.zero = refl
map-insertAt f _ (x'  xs) Fin.zero = refl
map-insertAt f x (x'  xs) (Fin.suc i) = cong (_ ∷_) (map-insertAt f x xs i)

map-[]≔ :  (f : A  B) (xs : Vec A n) (i : Fin n) 
          map f (xs [ i ]≔ x)  map f xs [ i ]≔ f x
map-[]≔ f xs i = map-updateAt xs i refl

map-⊛ :  (f : A  B  C) (g : A  B) (xs : Vec A n) 
        (map f xs  map g xs)  map (f ˢ g) xs
map-⊛ f g []       = refl
map-⊛ f g (x  xs) = cong (f x (g x) ∷_) (map-⊛ f g xs)

map-concat : (f : A  B) (xss : Vec (Vec A m) n) 
             map f (concat xss)  concat (map (map f) xss)
map-concat f [] = refl
map-concat f (xs  xss) = begin
  map f (concat (xs  xss))
    ≡⟨⟩
  map f (xs ++ concat xss)
    ≡⟨ map-++ f xs (concat xss) 
  map f xs ++ map f (concat xss)
    ≡⟨ cong (map f xs ++_) (map-concat f xss) 
  map f xs ++ concat (map (map f) xss)
    ≡⟨⟩
  concat (map (map f) (xs  xss))
     where open ≡-Reasoning

toList-map :  (f : A  B) (xs : Vec A n) 
             toList (map f xs)  List.map f (toList xs)
toList-map f [] = refl
toList-map f (x  xs) = cong (f x List.∷_) (toList-map f xs)

------------------------------------------------------------------------
-- _++_

-- See also Data.Vec.Properties.WithK.++-assoc.

++-injectiveˡ :  {n} (ws xs : Vec A n)  ws ++ ys  xs ++ zs  ws  xs
++-injectiveˡ []       []         _  = refl
++-injectiveˡ (_  ws) (_  xs) eq =
  cong₂ _∷_ (∷-injectiveˡ eq) (++-injectiveˡ _ _ (∷-injectiveʳ eq))

++-injectiveʳ :  {n} (ws xs : Vec A n)  ws ++ ys  xs ++ zs  ys  zs
++-injectiveʳ []       []         eq = eq
++-injectiveʳ (x  ws) (x′  xs) eq =
  ++-injectiveʳ ws xs (∷-injectiveʳ eq)

++-injective  :  (ws xs : Vec A n) 
                ws ++ ys  xs ++ zs  ws  xs × ys  zs
++-injective ws xs eq =
  (++-injectiveˡ ws xs eq , ++-injectiveʳ ws xs eq)

++-assoc-eqFree :  (xs : Vec A m) (ys : Vec A n) (zs : Vec A o)  let eq = +-assoc m n o in
                  cast eq ((xs ++ ys) ++ zs)  xs ++ (ys ++ zs)
++-assoc-eqFree []       ys zs = cast-is-id refl (ys ++ zs)
++-assoc-eqFree (x  xs) ys zs = cong (x ∷_) (++-assoc-eqFree xs ys zs)

++-identityʳ-eqFree :  (xs : Vec A n)  cast (+-identityʳ n) (xs ++ [])  xs
++-identityʳ-eqFree []       = refl
++-identityʳ-eqFree (x  xs) = cong (x ∷_) (++-identityʳ-eqFree xs)

cast-++ˡ :  .(eq : m  o) (xs : Vec A m) {ys : Vec A n} 
           cast (cong (_+ n) eq) (xs ++ ys)  cast eq xs ++ ys
cast-++ˡ _ _ {ys} = ≈-cong′ (_++ ys) refl

cast-++ʳ :  .(eq : n  o) (xs : Vec A m) {ys : Vec A n} 
           cast (cong (m +_) eq) (xs ++ ys)  xs ++ cast eq ys
cast-++ʳ _ xs = ≈-cong′ (xs ++_) refl

lookup-++-< :  (xs : Vec A m) (ys : Vec A n) 
               i (i<m : toℕ i < m) 
              lookup (xs ++ ys) i   lookup xs (Fin.fromℕ< i<m)
lookup-++-< (x  xs) ys zero    _     = refl
lookup-++-< (x  xs) ys (suc i) si<sm = lookup-++-< xs ys i (s<s⁻¹ si<sm)

lookup-++-≥ :  (xs : Vec A m) (ys : Vec A n) 
               i (i≥m : toℕ i  m) 
              lookup (xs ++ ys) i  lookup ys (Fin.reduce≥ i i≥m)
lookup-++-≥ []       ys i       _     = refl
lookup-++-≥ (x  xs) ys (suc i) si≥sm = lookup-++-≥ xs ys i (s≤s⁻¹ si≥sm)

lookup-++ˡ :  (xs : Vec A m) (ys : Vec A n) i 
             lookup (xs ++ ys) (i ↑ˡ n)  lookup xs i
lookup-++ˡ (x  xs) ys zero    = refl
lookup-++ˡ (x  xs) ys (suc i) = lookup-++ˡ xs ys i

lookup-++ʳ :  (xs : Vec A m) (ys : Vec A n) i 
             lookup (xs ++ ys) (m ↑ʳ i)  lookup ys i
lookup-++ʳ []       ys       zero    = refl
lookup-++ʳ []       (y  xs) (suc i) = lookup-++ʳ [] xs i
lookup-++ʳ (x  xs) ys       i       = lookup-++ʳ xs ys i

lookup-splitAt :  m (xs : Vec A m) (ys : Vec A n) i 
                lookup (xs ++ ys) i  [ lookup xs , lookup ys ]′
                (Fin.splitAt m i)
lookup-splitAt zero    []       ys i       = refl
lookup-splitAt (suc m) (x  xs) ys zero    = refl
lookup-splitAt (suc m) (x  xs) ys (suc i) = trans
  (lookup-splitAt m xs ys i)
  (sym ([,]-map (Fin.splitAt m i)))

toList-++ : (xs : Vec A n) (ys : Vec A m) 
            toList (xs ++ ys)  toList xs List.++ toList ys
toList-++ []       ys = refl
toList-++ (x  xs) ys = cong (x List.∷_) (toList-++ xs ys)

------------------------------------------------------------------------
-- concat

lookup-cast : .(eq : m  n) (xs : Vec A m) (i : Fin m) 
              lookup (cast eq xs) (Fin.cast eq i)  lookup xs i
lookup-cast {n = suc _} eq (x  _)  zero    = refl
lookup-cast {n = suc _} eq (_  xs) (suc i) =
  lookup-cast (suc-injective eq) xs i

lookup-cast₁ : .(eq : m  n) (xs : Vec A m) (i : Fin n) 
               lookup (cast eq xs) i  lookup xs (Fin.cast (sym eq) i)
lookup-cast₁ eq (x  _)  zero    = refl
lookup-cast₁ eq (_  xs) (suc i) =
  lookup-cast₁ (suc-injective eq) xs i

lookup-cast₂ : .(eq : m  n) (xs : Vec A n) (i : Fin m) 
               lookup xs (Fin.cast eq i)  lookup (cast (sym eq) xs) i
lookup-cast₂ eq (x  _)  zero    = refl
lookup-cast₂ eq (_  xs) (suc i) =
  lookup-cast₂ (suc-injective eq) xs i

lookup-concat :  (xss : Vec (Vec A m) n) i j 
                lookup (concat xss) (Fin.combine i j)  lookup (lookup xss i) j
lookup-concat (xs  xss) zero j = lookup-++ˡ xs (concat xss) j
lookup-concat (xs  xss) (suc i) j = begin
  lookup (concat (xs  xss)) (Fin.combine (suc i) j)
    ≡⟨ lookup-++ʳ xs (concat xss) (Fin.combine i j) 
  lookup (concat xss) (Fin.combine i j)
    ≡⟨ lookup-concat xss i j 
  lookup (lookup (xs  xss) (suc i)) j
     where open ≡-Reasoning

------------------------------------------------------------------------
-- zipWith

module _ {f : A  A  A} where

  zipWith-assoc : Associative _≡_ f 
                  Associative _≡_ (zipWith {n = n} f)
  zipWith-assoc assoc []       []       []       = refl
  zipWith-assoc assoc (x  xs) (y  ys) (z  zs) =
    cong₂ _∷_ (assoc x y z) (zipWith-assoc assoc xs ys zs)

  zipWith-idem : Idempotent _≡_ f 
                 Idempotent _≡_ (zipWith {n = n} f)
  zipWith-idem idem []       = refl
  zipWith-idem idem (x  xs) =
    cong₂ _∷_ (idem x) (zipWith-idem idem xs)

module _ {f : A  A  A} {e : A} where

  zipWith-identityˡ : LeftIdentity _≡_ e f 
                      LeftIdentity _≡_ (replicate n e) (zipWith f)
  zipWith-identityˡ idˡ []       = refl
  zipWith-identityˡ idˡ (x  xs) =
    cong₂ _∷_ (idˡ x) (zipWith-identityˡ idˡ xs)

  zipWith-identityʳ : RightIdentity _≡_ e f 
                      RightIdentity _≡_ (replicate n e) (zipWith f)
  zipWith-identityʳ idʳ []       = refl
  zipWith-identityʳ idʳ (x  xs) =
    cong₂ _∷_ (idʳ x) (zipWith-identityʳ idʳ xs)

  zipWith-zeroˡ : LeftZero _≡_ e f 
                  LeftZero _≡_ (replicate n e) (zipWith f)
  zipWith-zeroˡ zeˡ []       = refl
  zipWith-zeroˡ zeˡ (x  xs) =
    cong₂ _∷_ (zeˡ x) (zipWith-zeroˡ zeˡ xs)

  zipWith-zeroʳ : RightZero _≡_ e f 
                  RightZero _≡_ (replicate n e) (zipWith f)
  zipWith-zeroʳ zeʳ []       = refl
  zipWith-zeroʳ zeʳ (x  xs) =
    cong₂ _∷_ (zeʳ x) (zipWith-zeroʳ zeʳ xs)

module _ {f : A  A  A} {e : A} {⁻¹ : A  A} where

  zipWith-inverseˡ : LeftInverse _≡_ e ⁻¹ f 
                     LeftInverse _≡_ (replicate n e) (map ⁻¹) (zipWith f)
  zipWith-inverseˡ invˡ []       = refl
  zipWith-inverseˡ invˡ (x  xs) =
    cong₂ _∷_ (invˡ x) (zipWith-inverseˡ invˡ xs)

  zipWith-inverseʳ : RightInverse _≡_ e ⁻¹ f 
                     RightInverse _≡_ (replicate n e) (map ⁻¹) (zipWith f)
  zipWith-inverseʳ invʳ []       = refl
  zipWith-inverseʳ invʳ (x  xs) =
    cong₂ _∷_ (invʳ x) (zipWith-inverseʳ invʳ xs)

module _ {f g : A  A  A} where

  zipWith-distribˡ : _DistributesOverˡ_ _≡_ f g 
                     _DistributesOverˡ_ _≡_ (zipWith {n = n} f) (zipWith g)
  zipWith-distribˡ distribˡ []        []      []       = refl
  zipWith-distribˡ distribˡ (x  xs) (y  ys) (z  zs) =
    cong₂ _∷_ (distribˡ x y z) (zipWith-distribˡ distribˡ xs ys zs)

  zipWith-distribʳ : _DistributesOverʳ_ _≡_ f g 
                     _DistributesOverʳ_ _≡_ (zipWith {n = n} f) (zipWith g)
  zipWith-distribʳ distribʳ []        []      []       = refl
  zipWith-distribʳ distribʳ (x  xs) (y  ys) (z  zs) =
    cong₂ _∷_ (distribʳ x y z) (zipWith-distribʳ distribʳ xs ys zs)

  zipWith-absorbs : _Absorbs_ _≡_ f g 
                   _Absorbs_ _≡_ (zipWith {n = n} f) (zipWith g)
  zipWith-absorbs abs []       []       = refl
  zipWith-absorbs abs (x  xs) (y  ys) =
    cong₂ _∷_ (abs x y) (zipWith-absorbs abs xs ys)

module _ {f : A  B  C} {g : B  A  C} where

  zipWith-comm :  (comm :  x y  f x y  g y x) (xs : Vec A n) ys 
                 zipWith f xs ys  zipWith g ys xs
  zipWith-comm comm []       []       = refl
  zipWith-comm comm (x  xs) (y  ys) =
    cong₂ _∷_ (comm x y) (zipWith-comm comm xs ys)

zipWith-map₁ :  (_⊕_ : B  C  D) (f : A  B)
               (xs : Vec A n) (ys : Vec C n) 
               zipWith _⊕_ (map f xs) ys  zipWith  x y  f x  y) xs ys
zipWith-map₁ _⊕_ f []       []       = refl
zipWith-map₁ _⊕_ f (x  xs) (y  ys) =
  cong (f x  y ∷_) (zipWith-map₁ _⊕_ f xs ys)

zipWith-map₂ :  (_⊕_ : A  C  D) (f : B  C)
               (xs : Vec A n) (ys : Vec B n) 
               zipWith _⊕_ xs (map f ys)  zipWith  x y  x  f y) xs ys
zipWith-map₂ _⊕_ f []       []       = refl
zipWith-map₂ _⊕_ f (x  xs) (y  ys) =
  cong (x  f y ∷_) (zipWith-map₂ _⊕_ f xs ys)

lookup-zipWith :  (f : A  B  C) (i : Fin n) xs ys 
                 lookup (zipWith f xs ys) i  f (lookup xs i) (lookup ys i)
lookup-zipWith _ zero    (x  _)  (y  _)   = refl
lookup-zipWith _ (suc i) (_  xs) (_  ys)  = lookup-zipWith _ i xs ys

zipWith-++ :  (f : A  B  C)
             (xs : Vec A n) (ys : Vec A m)
             (xs' : Vec B n) (ys' : Vec B m) 
             zipWith f (xs ++ ys) (xs' ++ ys') 
             zipWith f xs xs' ++ zipWith f ys ys'
zipWith-++ f []       ys []         ys' = refl
zipWith-++ f (x  xs) ys (x'  xs') ys' =
  cong (_ ∷_) (zipWith-++ f xs ys xs' ys')

------------------------------------------------------------------------
-- zip

lookup-zip :  (i : Fin n) (xs : Vec A n) (ys : Vec B n) 
             lookup (zip xs ys) i  (lookup xs i , lookup ys i)
lookup-zip = lookup-zipWith _,_

-- map lifts projections to vectors of products.

map-proj₁-zip :  (xs : Vec A n) (ys : Vec B n) 
                map proj₁ (zip xs ys)  xs
map-proj₁-zip []       []       = refl
map-proj₁-zip (x  xs) (y  ys) = cong (x ∷_) (map-proj₁-zip xs ys)

map-proj₂-zip :  (xs : Vec A n) (ys : Vec B n) 
                map proj₂ (zip xs ys)  ys
map-proj₂-zip []       []       = refl
map-proj₂-zip (x  xs) (y  ys) = cong (y ∷_) (map-proj₂-zip xs ys)

-- map lifts pairing to vectors of products.

map-<,>-zip :  (f : A  B) (g : A  C) (xs : Vec A n) 
              map < f , g > xs  zip (map f xs) (map g xs)
map-<,>-zip f g []       = refl
map-<,>-zip f g (x  xs) = cong (_ ∷_) (map-<,>-zip f g xs)

map-zip :  (f : A  B) (g : C  D) (xs : Vec A n) (ys : Vec C n) 
          map (Product.map f g) (zip xs ys)  zip (map f xs) (map g ys)
map-zip f g []       []       = refl
map-zip f g (x  xs) (y  ys) = cong (_ ∷_) (map-zip f g xs ys)

------------------------------------------------------------------------
-- unzip

lookup-unzip :  (i : Fin n) (xys : Vec (A × B) n) 
               let xs , ys = unzip xys
               in (lookup xs i , lookup ys i)  lookup xys i
lookup-unzip ()      []
lookup-unzip zero    ((x , y)  xys) = refl
lookup-unzip (suc i) ((x , y)  xys) = lookup-unzip i xys

map-unzip :  (f : A  B) (g : C  D) (xys : Vec (A × C) n) 
            let xs , ys = unzip xys
            in (map f xs , map g ys)  unzip (map (Product.map f g) xys)
map-unzip f g []              = refl
map-unzip f g ((x , y)  xys) =
  cong (Product.map (f x ∷_) (g y ∷_)) (map-unzip f g xys)

-- Products of vectors are isomorphic to vectors of products.

unzip∘zip :  (xs : Vec A n) (ys : Vec B n) 
            unzip (zip xs ys)  (xs , ys)
unzip∘zip [] []             = refl
unzip∘zip (x  xs) (y  ys) =
  cong (Product.map (x ∷_) (y ∷_)) (unzip∘zip xs ys)

zip∘unzip :  (xys : Vec (A × B) n)  uncurry zip (unzip xys)  xys
zip∘unzip []         = refl
zip∘unzip (xy  xys) = cong (xy ∷_) (zip∘unzip xys)

×v↔v× : (Vec A n × Vec B n)  Vec (A × B) n
×v↔v× = mk↔ₛ′ (uncurry zip) unzip zip∘unzip (uncurry unzip∘zip)

------------------------------------------------------------------------
-- _⊛_

lookup-⊛ :  i (fs : Vec (A  B) n) (xs : Vec A n) 
           lookup (fs  xs) i  (lookup fs i $ lookup xs i)
lookup-⊛ zero    (f  fs) (x  xs) = refl
lookup-⊛ (suc i) (f  fs) (x  xs) = lookup-⊛ i fs xs

map-is-⊛ :  (f : A  B) (xs : Vec A n) 
           map f xs  (replicate n f  xs)
map-is-⊛ f []       = refl
map-is-⊛ f (x  xs) = cong (_ ∷_) (map-is-⊛ f xs)

⊛-is-zipWith :  (fs : Vec (A  B) n) (xs : Vec A n) 
               (fs  xs)  zipWith _$_ fs xs
⊛-is-zipWith []       []       = refl
⊛-is-zipWith (f  fs) (x  xs) = cong (f x ∷_) (⊛-is-zipWith fs xs)

zipWith-is-⊛ :  (f : A  B  C) (xs : Vec A n) (ys : Vec B n) 
               zipWith f xs ys  (replicate n f  xs  ys)
zipWith-is-⊛ f []       []       = refl
zipWith-is-⊛ f (x  xs) (y  ys) = cong (_ ∷_) (zipWith-is-⊛ f xs ys)

⊛-is->>= :  (fs : Vec (A  B) n) (xs : Vec A n) 
           (fs  xs)  (fs DiagonalBind.>>= flip map xs)
⊛-is->>= []       []       = refl
⊛-is->>= (f  fs) (x  xs) = cong (f x ∷_) $ begin
  fs  xs                                          ≡⟨ ⊛-is->>= fs xs 
  diagonal (map (flip map xs) fs)                  ≡⟨⟩
  diagonal (map (tail  flip map (x  xs)) fs)     ≡⟨ cong diagonal (map-∘ _ _ _) 
  diagonal (map tail (map (flip map (x  xs)) fs)) 
  where open ≡-Reasoning

------------------------------------------------------------------------
-- _⊛*_

lookup-⊛* :  (fs : Vec (A  B) m) (xs : Vec A n) i j 
            lookup (fs ⊛* xs) (Fin.combine i j)  (lookup fs i $ lookup xs j)
lookup-⊛* (f  fs) xs zero j = trans (lookup-++ˡ (map f xs) _ j) (lookup-map j f xs)
lookup-⊛* (f  fs) xs (suc i) j = trans (lookup-++ʳ (map f xs) _ (Fin.combine i j)) (lookup-⊛* fs xs i j)

------------------------------------------------------------------------
-- foldl

-- The (uniqueness part of the) universality property for foldl.

foldl-universal :  (B :   Set b) (f : FoldlOp A B) e
                  (h :  {c} (C :   Set c) (g : FoldlOp A C) (e : C zero) 
                        {n}  Vec A n  C n) 
                  (∀ {c} {C} {g : FoldlOp A C} e  h {c} C g e []  e) 
                  (∀ {c} {C} {g : FoldlOp A C} e {n} x 
                   (h {c} C g e {suc n})  (x ∷_)  h (C  suc) g (g e x)) 
                  h B f e  foldl {n = n} B f e
foldl-universal B f e h base step []       = base e
foldl-universal B f e h base step (x  xs) = begin
  h B f e (x  xs)             ≡⟨ step e x xs 
  h (B  suc) f (f e x) xs     ≡⟨ foldl-universal _ f (f e x) h base step xs 
  foldl (B  suc) f (f e x) xs ≡⟨⟩
  foldl B f e (x  xs)         
  where open ≡-Reasoning

foldl-fusion :  {B :   Set b} {C :   Set c}
               (h :  {n}  B n  C n) 
               {f : FoldlOp A B} {d : B zero} 
               {g : FoldlOp A C} {e : C zero} 
               (h d  e) 
               (∀ {n} b x  h (f {n} b x)  g (h b) x) 
               h  foldl {n = n} B f d  foldl C g e
foldl-fusion h {f} {d} {g} {e} base fuse []       = base
foldl-fusion h {f} {d} {g} {e} base fuse (x  xs) =
  foldl-fusion h eq fuse xs
  where
    open ≡-Reasoning
    eq : h (f d x)  g e x
    eq = begin
      h (f d x) ≡⟨ fuse d x 
      g (h d) x ≡⟨ cong  e  g e x) base 
      g e x     

foldl-[] :  (B :   Set b) (f : FoldlOp A B) {e}  foldl B f e []  e
foldl-[] _ _ = refl

------------------------------------------------------------------------
-- foldr

-- See also Data.Vec.Properties.WithK.foldr-cong.

-- The (uniqueness part of the) universality property for foldr.

module _ (B :   Set b) (f : FoldrOp A B) {e : B zero} where

  foldr-universal : (h :  {n}  Vec A n  B n) 
                    h []  e 
                    (∀ {n} x  h  (x ∷_)  f {n} x  h) 
                    h  foldr {n = n} B f e
  foldr-universal h base step []       = base
  foldr-universal h base step (x  xs) = begin
    h (x  xs)           ≡⟨ step x xs 
    f x (h xs)           ≡⟨ cong (f x) (foldr-universal h base step xs) 
    f x (foldr B f e xs) 
    where open ≡-Reasoning

  foldr-[] : foldr B f e []  e
  foldr-[] = refl

  foldr-++ :  (xs : Vec A m) 
             foldr B f e (xs ++ ys)  foldr (B  (_+ n)) f (foldr B f e ys) xs
  foldr-++ []       = refl
  foldr-++ (x  xs) = cong (f x) (foldr-++ xs)

-- fusion and identity as consequences of universality

foldr-fusion :  {B :   Set b} {f : FoldrOp A B} e
                 {C :   Set c} {g : FoldrOp A C}
               (h :  {n}  B n  C n) 
               (∀ {n} x  h  f {n} x  g x  h) 
               h  foldr {n = n} B f e  foldr C g (h e)
foldr-fusion {B = B} {f} e {C} h fuse =
  foldr-universal C _ _ refl  x xs  fuse x (foldr B f e xs))

id-is-foldr : id  foldr {n = n} (Vec A) _∷_ []
id-is-foldr = foldr-universal _ _ id refl  _ _  refl)

map-is-foldr :  (f : A  B) 
               map {n = n} f  foldr (Vec B)  x ys  f x  ys) []
map-is-foldr f = foldr-universal (Vec _)  x ys  f x  ys) (map f) refl  _ _  refl)

++-is-foldr :  (xs : Vec A m) 
              xs ++ ys  foldr (Vec A  (_+ n)) _∷_ ys xs
++-is-foldr {A = A} {n = n} {ys} xs =
  foldr-universal (Vec A  (_+ n)) _∷_ (_++ ys) refl  _ _  refl) xs

------------------------------------------------------------------------
-- _∷ʳ_

-- snoc is snoc

unfold-∷ʳ-eqFree :  x (xs : Vec A n)  cast (+-comm 1 n) (xs ∷ʳ x)  xs ++ [ x ]
unfold-∷ʳ-eqFree x []       = refl
unfold-∷ʳ-eqFree x (y  xs) = cong (y ∷_) (unfold-∷ʳ-eqFree x xs)

∷ʳ-injective :  (xs ys : Vec A n)  xs ∷ʳ x  ys ∷ʳ y  xs  ys × x  y
∷ʳ-injective []       []        refl = (refl , refl)
∷ʳ-injective (x  xs) (y   ys) eq   with ∷-injective eq
... | refl , eq′ = Product.map₁ (cong (x ∷_)) (∷ʳ-injective xs ys eq′)

∷ʳ-injectiveˡ :  (xs ys : Vec A n)  xs ∷ʳ x  ys ∷ʳ y  xs  ys
∷ʳ-injectiveˡ xs ys eq = proj₁ (∷ʳ-injective xs ys eq)

∷ʳ-injectiveʳ :  (xs ys : Vec A n)  xs ∷ʳ x  ys ∷ʳ y  x  y
∷ʳ-injectiveʳ xs ys eq = proj₂ (∷ʳ-injective xs ys eq)

foldl-∷ʳ :  (B :   Set b) (f : FoldlOp A B) e y (ys : Vec A n) 
           foldl B f e (ys ∷ʳ y)  f (foldl B f e ys) y
foldl-∷ʳ B f e y []       = refl
foldl-∷ʳ B f e y (x  xs) = foldl-∷ʳ (B  suc) f (f e x) y xs

foldr-∷ʳ :  (B :   Set b) (f : FoldrOp A B) {e} y (ys : Vec A n) 
           foldr B f e (ys ∷ʳ y)  foldr (B  suc) f (f y e) ys
foldr-∷ʳ B f y []       = refl
foldr-∷ʳ B f y (x  xs) = cong (f x) (foldr-∷ʳ B f y xs)

-- init, last and _∷ʳ_

init-∷ʳ :  x (xs : Vec A n)  init (xs ∷ʳ x)  xs
init-∷ʳ x []       = refl
init-∷ʳ x (y  xs) = cong (y ∷_) (init-∷ʳ x xs)

last-∷ʳ :  x (xs : Vec A n)  last (xs ∷ʳ x)  x
last-∷ʳ x []       = refl
last-∷ʳ x (y  xs) = last-∷ʳ x xs

-- map and _∷ʳ_

map-∷ʳ :  (f : A  B) x (xs : Vec A n)  map f (xs ∷ʳ x)  map f xs ∷ʳ f x
map-∷ʳ f x []       = refl
map-∷ʳ f x (y  xs) = cong (f y ∷_) (map-∷ʳ f x xs)

-- cast and _∷ʳ_

cast-∷ʳ :  .(eq : suc n  suc m) x (xs : Vec A n) 
          cast eq (xs ∷ʳ x)  (cast (cong pred eq) xs) ∷ʳ x
cast-∷ʳ _ x _ = ≈-cong′ (_∷ʳ x) refl

-- _++_ and _∷ʳ_

++-∷ʳ-eqFree :  z (xs : Vec A m) (ys : Vec A n)  let eq = sym (+-suc m n) in
               cast eq ((xs ++ ys) ∷ʳ z)  xs ++ (ys ∷ʳ z)
++-∷ʳ-eqFree {m = zero}  z []       []       = refl
++-∷ʳ-eqFree {m = zero}  z []       (y  ys) = cong (y ∷_) (++-∷ʳ-eqFree z [] ys)
++-∷ʳ-eqFree {m = suc m} z (x  xs) ys       = cong (x ∷_) (++-∷ʳ-eqFree z xs ys)

∷ʳ-++-eqFree :  a (xs : Vec A n) {ys : Vec A m}  let eq = sym (+-suc n m) in
               cast eq ((xs ∷ʳ a) ++ ys)  xs ++ (a  ys)
∷ʳ-++-eqFree a []       {ys} = cong (a ∷_) (cast-is-id refl ys)
∷ʳ-++-eqFree a (x  xs) {ys} = cong (x ∷_) (∷ʳ-++-eqFree a xs)

------------------------------------------------------------------------
-- reverse

-- reverse of cons is snoc of reverse.

reverse-∷ :  x (xs : Vec A n)  reverse (x  xs)  reverse xs ∷ʳ x
reverse-∷ x xs = sym (foldl-fusion (_∷ʳ x) refl  b x  refl) xs)

-- foldl after a reverse is a foldr

foldl-reverse :  (B :   Set b) (f : FoldlOp A B) {e} 
                foldl {n = n} B f e  reverse  foldr B (flip f) e
foldl-reverse _ _ {e} []       = refl
foldl-reverse B f {e} (x  xs) = begin
  foldl B f e (reverse (x  xs)) ≡⟨ cong (foldl B f e) (reverse-∷ x xs) 
  foldl B f e (reverse xs ∷ʳ x)  ≡⟨ foldl-∷ʳ B f e x (reverse xs) 
  f (foldl B f e (reverse xs)) x ≡⟨ cong (flip f x) (foldl-reverse B f xs) 
  f (foldr B (flip f) e xs) x    ≡⟨⟩
  foldr B (flip f) e (x  xs)    
  where open ≡-Reasoning

-- foldr after a reverse is a foldl

foldr-reverse :  (B :   Set b) (f : FoldrOp A B) {e} 
                foldr {n = n} B f e  reverse  foldl B (flip f) e
foldr-reverse B f {e} xs = foldl-fusion (foldr B f e) refl  _ _  refl) xs

-- reverse is involutive.

reverse-involutive : Involutive {A = Vec A n} _≡_ reverse
reverse-involutive xs = begin
  reverse (reverse xs)    ≡⟨  foldl-reverse (Vec _) (flip _∷_) xs 
  foldr (Vec _) _∷_ [] xs ≡⟨ id-is-foldr xs 
  xs                      
  where open ≡-Reasoning

reverse-reverse : reverse xs  ys  reverse ys  xs
reverse-reverse {xs = xs} {ys} eq =  begin
  reverse ys           ≡⟨ cong reverse eq 
  reverse (reverse xs) ≡⟨  reverse-involutive xs 
  xs                   
  where open ≡-Reasoning

-- reverse is injective.

reverse-injective : reverse xs  reverse ys  xs  ys
reverse-injective {xs = xs} {ys} eq = begin
  xs                   ≡⟨ reverse-reverse eq 
  reverse (reverse ys) ≡⟨  reverse-involutive ys 
  ys                   
  where open ≡-Reasoning

-- init and last of reverse

init-reverse : init  reverse  reverse  tail {A = A} {n = n}
init-reverse (x  xs) = begin
  init (reverse (x  xs))   ≡⟨ cong init (reverse-∷ x xs) 
  init (reverse xs ∷ʳ x)    ≡⟨ init-∷ʳ x (reverse xs) 
  reverse xs                
  where open ≡-Reasoning

last-reverse : last  reverse  head {A = A} {n = n}
last-reverse (x  xs) = begin
  last (reverse (x  xs))   ≡⟨ cong last (reverse-∷ x xs) 
  last (reverse xs ∷ʳ x)    ≡⟨ last-∷ʳ x (reverse xs) 
  x                         
  where open ≡-Reasoning

-- map and reverse

map-reverse :  (f : A  B) (xs : Vec A n) 
              map f (reverse xs)  reverse (map f xs)
map-reverse f []       = refl
map-reverse f (x  xs) = begin
  map f (reverse (x  xs))  ≡⟨  cong (map f) (reverse-∷ x xs) 
  map f (reverse xs ∷ʳ x)   ≡⟨  map-∷ʳ f x (reverse xs) 
  map f (reverse xs) ∷ʳ f x ≡⟨  cong (_∷ʳ f x) (map-reverse f xs ) 
  reverse (map f xs) ∷ʳ f x ≡⟨ reverse-∷ (f x) (map f xs) 
  reverse (f x  map f xs)  ≡⟨⟩
  reverse (map f (x  xs))  
  where open ≡-Reasoning

-- append and reverse

reverse-++-eqFree :  (xs : Vec A m) (ys : Vec A n)  let eq = +-comm m n in
                    cast eq (reverse (xs ++ ys))  reverse ys ++ reverse xs
reverse-++-eqFree {m = zero}  {n = n} []       ys = ≈-sym (++-identityʳ-eqFree (reverse ys))
reverse-++-eqFree {m = suc m} {n = n} (x  xs) ys = begin
  reverse (x  xs ++ ys)              ≂⟨ reverse-∷ x (xs ++ ys) 
  reverse (xs ++ ys) ∷ʳ x             ≈⟨ ≈-cong′ (_∷ʳ x) (reverse-++-eqFree xs ys) 
  (reverse ys ++ reverse xs) ∷ʳ x     ≈⟨ ++-∷ʳ-eqFree x (reverse ys) (reverse xs) 
  reverse ys ++ (reverse xs ∷ʳ x)     ≂⟨ cong (reverse ys ++_) (reverse-∷ x xs) 
  reverse ys ++ (reverse (x  xs))    
  where open CastReasoning

cast-reverse :  .(eq : m  n)  cast eq  reverse {A = A} {n = m}  reverse  cast eq
cast-reverse _ _ = ≈-cong′ reverse refl

------------------------------------------------------------------------
-- _ʳ++_

-- reverse-append is append of reverse.

unfold-ʳ++ :  (xs : Vec A m) (ys : Vec A n)  xs ʳ++ ys  reverse xs ++ ys
unfold-ʳ++ xs ys = sym (foldl-fusion (_++ ys) refl  b x  refl) xs)

-- foldr after a reverse-append is a foldl

foldr-ʳ++ :  (B :   Set b) (f : FoldrOp A B) {e}
            (xs : Vec A m) {ys : Vec A n} 
            foldr B f e (xs ʳ++ ys) 
            foldl (B  (_+ n)) (flip f) (foldr B f e ys) xs
foldr-ʳ++ B f {e} xs = foldl-fusion (foldr B f e) refl  _ _  refl) xs

-- map and _ʳ++_

map-ʳ++ :  (f : A  B) (xs : Vec A m) 
          map f (xs ʳ++ ys)  map f xs ʳ++ map f ys
map-ʳ++ {ys = ys} f xs = begin
  map f (xs ʳ++ ys)              ≡⟨  cong (map f) (unfold-ʳ++ xs ys) 
  map f (reverse xs ++ ys)       ≡⟨  map-++ f (reverse xs) ys 
  map f (reverse xs) ++ map f ys ≡⟨  cong (_++ map f ys) (map-reverse f xs) 
  reverse (map f xs) ++ map f ys ≡⟨ unfold-ʳ++ (map f xs) (map f ys) 
  map f xs ʳ++ map f ys          
  where open ≡-Reasoning

∷-ʳ++-eqFree :  a (xs : Vec A m) {ys : Vec A n}  let eq = sym (+-suc m n) in
               cast eq ((a  xs) ʳ++ ys)  xs ʳ++ (a  ys)
∷-ʳ++-eqFree a xs {ys} = begin
  (a  xs) ʳ++ ys         ≂⟨ unfold-ʳ++ (a  xs) ys 
  reverse (a  xs) ++ ys  ≂⟨ cong (_++ ys) (reverse-∷ a xs) 
  (reverse xs ∷ʳ a) ++ ys ≈⟨ ∷ʳ-++-eqFree a (reverse xs) 
  reverse xs ++ (a  ys)  ≂⟨ unfold-ʳ++ xs (a  ys) 
  xs ʳ++ (a  ys)         
  where open CastReasoning

++-ʳ++-eqFree :  (xs : Vec A m) {ys : Vec A n} {zs : Vec A o}  let eq = m+n+o≡n+[m+o] m n o in
                cast eq ((xs ++ ys) ʳ++ zs)  ys ʳ++ (xs ʳ++ zs)
++-ʳ++-eqFree {m = m} {n} {o} xs {ys} {zs} = begin
  ((xs ++ ys) ʳ++ zs)              ≂⟨ unfold-ʳ++ (xs ++ ys) zs 
  reverse (xs ++ ys) ++ zs         ≈⟨ ≈-cong′ (_++ zs) (reverse-++-eqFree xs ys) 
  (reverse ys ++ reverse xs) ++ zs ≈⟨ ++-assoc-eqFree (reverse ys) (reverse xs) zs 
  reverse ys ++ (reverse xs ++ zs) ≂⟨ cong (reverse ys ++_) (unfold-ʳ++ xs zs) 
  reverse ys ++ (xs ʳ++ zs)        ≂⟨ unfold-ʳ++ ys (xs ʳ++ zs) 
  ys ʳ++ (xs ʳ++ zs)               
  where open CastReasoning

ʳ++-ʳ++-eqFree :  (xs : Vec A m) {ys : Vec A n} {zs : Vec A o}  let eq = m+n+o≡n+[m+o] m n o in
                 cast eq ((xs ʳ++ ys) ʳ++ zs)  ys ʳ++ (xs ++ zs)
ʳ++-ʳ++-eqFree {m = m} {n} {o} xs {ys} {zs} = begin
  (xs ʳ++ ys) ʳ++ zs                         ≂⟨ cong (_ʳ++ zs) (unfold-ʳ++ xs ys) 
  (reverse xs ++ ys) ʳ++ zs                  ≂⟨ unfold-ʳ++ (reverse xs ++ ys) zs 
  reverse (reverse xs ++ ys) ++ zs           ≈⟨ ≈-cong′ (_++ zs) (reverse-++-eqFree (reverse xs) ys) 
  (reverse ys ++ reverse (reverse xs)) ++ zs ≂⟨ cong ((_++ zs)  (reverse ys ++_)) (reverse-involutive xs) 
  (reverse ys ++ xs) ++ zs                   ≈⟨ ++-assoc-eqFree (reverse ys) xs zs 
  reverse ys ++ (xs ++ zs)                   ≂⟨ unfold-ʳ++ ys (xs ++ zs) 
  ys ʳ++ (xs ++ zs)                          
  where open CastReasoning

------------------------------------------------------------------------
-- sum

sum-++ :  (xs : Vec  m)  sum (xs ++ ys)  sum xs + sum ys
sum-++ {_}       []       = refl
sum-++ {ys = ys} (x  xs) = begin
  x + sum (xs ++ ys)     ≡⟨  cong (x +_) (sum-++ xs) 
  x + (sum xs + sum ys)  ≡⟨ +-assoc x (sum xs) (sum ys) 
  sum (x  xs) + sum ys  
  where open ≡-Reasoning

------------------------------------------------------------------------
-- replicate

lookup-replicate :  (i : Fin n) (x : A)  lookup (replicate n x) i  x
lookup-replicate zero    x = refl
lookup-replicate (suc i) x = lookup-replicate i x

map-replicate :   (f : A  B) (x : A) n 
                 map f (replicate n x)  replicate n (f x)
map-replicate f x zero = refl
map-replicate f x (suc n) = cong (f x ∷_) (map-replicate f x n)

transpose-replicate :  (xs : Vec A m) 
                      transpose (replicate n xs)  map (replicate n) xs
transpose-replicate {n = zero}  _  = sym (map-const _ [])
transpose-replicate {n = suc n} xs = begin
  transpose (replicate (suc n) xs)                    ≡⟨⟩
  (replicate _ _∷_  xs  transpose (replicate _ xs)) ≡⟨ cong₂ _⊛_ (sym (map-is-⊛ _∷_ xs)) (transpose-replicate xs) 
  (map _∷_ xs  map (replicate n) xs)                 ≡⟨ map-⊛ _∷_ (replicate n) xs 
  map (replicate (suc n)) xs                          
  where open ≡-Reasoning

zipWith-replicate :  (_⊕_ : A  B  C) (x : A) (y : B) 
                    zipWith _⊕_ (replicate n x) (replicate n y)  replicate n (x  y)
zipWith-replicate {n = zero}  _⊕_ x y = refl
zipWith-replicate {n = suc n} _⊕_ x y = cong (x  y ∷_) (zipWith-replicate _⊕_ x y)

zipWith-replicate₁ :  (_⊕_ : A  B  C) (x : A) (ys : Vec B n) 
                     zipWith _⊕_ (replicate n x) ys  map (x ⊕_) ys
zipWith-replicate₁ _⊕_ x []       = refl
zipWith-replicate₁ _⊕_ x (y  ys) =
  cong (x  y ∷_) (zipWith-replicate₁ _⊕_ x ys)

zipWith-replicate₂ :  (_⊕_ : A  B  C) (xs : Vec A n) (y : B) 
                     zipWith _⊕_ xs (replicate n y)  map (_⊕ y) xs
zipWith-replicate₂ _⊕_ []       y = refl
zipWith-replicate₂ _⊕_ (x  xs) y =
  cong (x  y ∷_) (zipWith-replicate₂ _⊕_ xs y)

toList-replicate :  (n : ) (x : A) 
                   toList (replicate n x)  List.replicate n x
toList-replicate zero    x = refl
toList-replicate (suc n) x = cong (_ List.∷_) (toList-replicate n x)

------------------------------------------------------------------------
-- iterate

iterate-id :  (x : A) n  iterate id x n  replicate n x
iterate-id x zero    = refl
iterate-id x (suc n) = cong (_ ∷_) (iterate-id (id x) n)

take-iterate :  n f (x : A)  take n (iterate f x (n + m))  iterate f x n
take-iterate zero    f x = refl
take-iterate (suc n) f x = cong (_ ∷_) (take-iterate n f (f x))

drop-iterate :  n f (x : A)  drop n (iterate f x (n + zero))  []
drop-iterate zero    f x = refl
drop-iterate (suc n) f x = drop-iterate n f (f x)

lookup-iterate :   f (x : A) (i : Fin n)  lookup (iterate f x n) i  ℕ.iterate f x (toℕ i)
lookup-iterate f x zero    = refl
lookup-iterate f x (suc i) = lookup-iterate f (f x) i

toList-iterate :  f (x : A) n  toList (iterate f x n)  List.iterate f x n
toList-iterate f x zero    = refl
toList-iterate f x (suc n) = cong (_ List.∷_) (toList-iterate f (f x) n)

------------------------------------------------------------------------
-- tabulate

lookup∘tabulate :  (f : Fin n  A) (i : Fin n) 
                  lookup (tabulate f) i  f i
lookup∘tabulate f zero    = refl
lookup∘tabulate f (suc i) = lookup∘tabulate (f  suc) i

tabulate∘lookup :  (xs : Vec A n)  tabulate (lookup xs)  xs
tabulate∘lookup []       = refl
tabulate∘lookup (x  xs) = cong (x ∷_) (tabulate∘lookup xs)

tabulate-∘ :  (f : A  B) (g : Fin n  A) 
             tabulate (f  g)  map f (tabulate g)
tabulate-∘ {n = zero}  f g = refl
tabulate-∘ {n = suc n} f g = cong (f (g zero) ∷_) (tabulate-∘ f (g  suc))

tabulate-cong :  {f g : Fin n  A}  f  g  tabulate f  tabulate g
tabulate-cong {n = zero}  p = refl
tabulate-cong {n = suc n} p = cong₂ _∷_ (p zero) (tabulate-cong (p  suc))

------------------------------------------------------------------------
-- allFin

lookup-allFin :  (i : Fin n)  lookup (allFin n) i  i
lookup-allFin = lookup∘tabulate id

allFin-map :  n  allFin (suc n)  zero  map suc (allFin n)
allFin-map n = cong (zero ∷_) $ tabulate-∘ suc id

tabulate-allFin :  (f : Fin n  A)  tabulate f  map f (allFin n)
tabulate-allFin f = tabulate-∘ f id

-- If you look up every possible index, in increasing order, then you
-- get back the vector you started with.

map-lookup-allFin :  (xs : Vec A n)  map (lookup xs) (allFin n)  xs
map-lookup-allFin {n = n} xs = begin
  map (lookup xs) (allFin n) ≡⟨ tabulate-∘ (lookup xs) id 
  tabulate (lookup xs)       ≡⟨ tabulate∘lookup xs 
  xs                         
  where open ≡-Reasoning

------------------------------------------------------------------------
-- count

module _ {P : Pred A p} (P? : Decidable P) where

  count≤n :  (xs : Vec A n)  count P? xs  n
  count≤n []       = z≤n
  count≤n (x  xs) with does (P? x)
  ... | true  = s≤s (count≤n xs)
  ... | false = m≤n⇒m≤1+n (count≤n xs)

------------------------------------------------------------------------
-- length

length-toList : (xs : Vec A n)  List.length (toList xs)  length xs
length-toList []       = refl
length-toList (x  xs) = cong suc (length-toList xs)

------------------------------------------------------------------------
-- insertAt

insertAt-lookup :  (xs : Vec A n) (i : Fin (suc n)) (v : A) 
                  lookup (insertAt xs i v) i  v
insertAt-lookup xs       zero     v = refl
insertAt-lookup (x  xs) (suc i)  v = insertAt-lookup xs i v

insertAt-punchIn :  (xs : Vec A n) (i : Fin (suc n)) (v : A) (j : Fin n) 
                   lookup (insertAt xs i v) (Fin.punchIn i j)  lookup xs j
insertAt-punchIn xs       zero     v j       = refl
insertAt-punchIn (x  xs) (suc i)  v zero    = refl
insertAt-punchIn (x  xs) (suc i)  v (suc j) = insertAt-punchIn xs i v j

toList-insertAt :  (xs : Vec A n) (i : Fin (suc n)) (v : A) 
                  toList (insertAt xs i v)  List.insertAt (toList xs) (Fin.cast (cong suc (sym (length-toList xs))) i) v
toList-insertAt xs       zero    v = refl
toList-insertAt (x  xs) (suc i) v = cong (_ List.∷_) (toList-insertAt xs i v)

------------------------------------------------------------------------
-- removeAt

removeAt-punchOut :  (xs : Vec A (suc n)) {i} {j} (i≢j : i  j) 
                  lookup (removeAt xs i) (Fin.punchOut i≢j)  lookup xs j
removeAt-punchOut (x  xs)     {zero}  {zero}  i≢j = contradiction refl i≢j
removeAt-punchOut (x  xs)     {zero}  {suc j} i≢j = refl
removeAt-punchOut (x  y  xs) {suc i} {zero}  i≢j = refl
removeAt-punchOut (x  y  xs) {suc i} {suc j} i≢j =
  removeAt-punchOut (y  xs) (i≢j  cong suc)

------------------------------------------------------------------------
-- insertAt and removeAt

removeAt-insertAt :  (xs : Vec A n) (i : Fin (suc n)) (v : A) 
                    removeAt (insertAt xs i v) i  xs
removeAt-insertAt xs               zero           v = refl
removeAt-insertAt (x  xs)         (suc zero)     v = refl
removeAt-insertAt (x  xs@(_  _)) (suc (suc i))  v =
  cong (x ∷_) (removeAt-insertAt xs (suc i) v)

insertAt-removeAt :  (xs : Vec A (suc n)) (i : Fin (suc n)) 
                    insertAt (removeAt xs i) i (lookup xs i)  xs
insertAt-removeAt (x  xs)         zero     = refl
insertAt-removeAt (x  xs@(_  _)) (suc i)  =
  cong (x ∷_) (insertAt-removeAt xs i)

------------------------------------------------------------------------
-- Conversion function

toList∘fromList : (xs : List A)  toList (fromList xs)  xs
toList∘fromList List.[]       = refl
toList∘fromList (x List.∷ xs) = cong (x List.∷_) (toList∘fromList xs)

toList-cast :  .(eq : m  n) (xs : Vec A m)  toList (cast eq xs)  toList xs
toList-cast {n = zero}  eq []       = refl
toList-cast {n = suc _} eq (x  xs) =
  cong (x List.∷_) (toList-cast (cong pred eq) xs)

cast-fromList :  {xs ys : List A} (eq : xs  ys) 
                cast (cong List.length eq) (fromList xs)  fromList ys
cast-fromList {xs = List.[]}     {ys = List.[]}     eq = refl
cast-fromList {xs = x List.∷ xs} {ys = y List.∷ ys} eq =
  let x≡y , xs≡ys = List.∷-injective eq in begin
  x  cast (cong (pred  List.length) eq) (fromList xs) ≡⟨ cong (_ ∷_) (cast-fromList xs≡ys) 
  x  fromList ys                                       ≡⟨ cong (_∷ _) x≡y 
  y  fromList ys                                       
  where open ≡-Reasoning

fromList-map :  (f : A  B) (xs : List A) 
               cast (List.length-map f xs) (fromList (List.map f xs))  map f (fromList xs)
fromList-map f List.[]       = refl
fromList-map f (x List.∷ xs) = cong (f x ∷_) (fromList-map f xs)

fromList-++ :  (xs : List A) {ys : List A} 
              cast (List.length-++ xs) (fromList (xs List.++ ys))  fromList xs ++ fromList ys
fromList-++ List.[]       {ys} = cast-is-id refl (fromList ys)
fromList-++ (x List.∷ xs) {ys} = cong (x ∷_) (fromList-++ xs)

fromList-reverse : (xs : List A)  cast (List.length-reverse xs) (fromList (List.reverse xs))  reverse (fromList xs)
fromList-reverse List.[] = refl
fromList-reverse (x List.∷ xs) = begin
  fromList (List.reverse (x List.∷ xs))         ≈⟨ cast-fromList (List.ʳ++-defn xs) 
  fromList (List.reverse xs List.++ List.[ x ]) ≈⟨ fromList-++ (List.reverse xs) 
  fromList (List.reverse xs) ++ [ x ]           ≈⟨ unfold-∷ʳ-eqFree x (fromList (List.reverse xs)) 
  fromList (List.reverse xs) ∷ʳ x               ≈⟨ ≈-cong′ (_∷ʳ x) (fromList-reverse xs) 
  reverse (fromList xs) ∷ʳ x                    ≂⟨ reverse-∷ x (fromList xs) 
  reverse (x  fromList xs)                     ≈⟨⟩
  reverse (fromList (x List.∷ xs))              
  where open CastReasoning

------------------------------------------------------------------------
-- TRANSITION TO EQ-FREE LEMMA
------------------------------------------------------------------------
-- Please use the new proofs, which do not require an `eq` parameter.
-- In v3, `name` will be changed to be the same lemma as `name-eqFree`,
-- and `name-eqFree` will be deprecated.

++-assoc :  .(eq : (m + n) + o  m + (n + o)) (xs : Vec A m) (ys : Vec A n) (zs : Vec A o) 
           cast eq ((xs ++ ys) ++ zs)  xs ++ (ys ++ zs)
++-assoc _ = ++-assoc-eqFree
{-# WARNING_ON_USAGE ++-assoc
"Warning: ++-assoc was deprecated in v2.2.
Please use ++-assoc-eqFree instead, which does not take eq."
#-}

++-identityʳ :  .(eq : n + zero  n) (xs : Vec A n)  cast eq (xs ++ [])  xs
++-identityʳ _ = ++-identityʳ-eqFree
{-# WARNING_ON_USAGE ++-identityʳ
"Warning: ++-identityʳ was deprecated in v2.2.
Please use ++-identityʳ-eqFree instead, which does not take eq."
#-}

unfold-∷ʳ :  .(eq : suc n  n + 1) x (xs : Vec A n)  cast eq (xs ∷ʳ x)  xs ++ [ x ]
unfold-∷ʳ _ = unfold-∷ʳ-eqFree
{-# WARNING_ON_USAGE unfold-∷ʳ
"Warning: unfold-∷ʳ was deprecated in v2.2.
Please use unfold-∷ʳ-eqFree instead, which does not take eq."
#-}

++-∷ʳ :  .(eq : suc (m + n)  m + suc n) z (xs : Vec A m) (ys : Vec A n) 
        cast eq ((xs ++ ys) ∷ʳ z)  xs ++ (ys ∷ʳ z)
++-∷ʳ _ = ++-∷ʳ-eqFree
{-# WARNING_ON_USAGE ++-∷ʳ
"Warning: ++-∷ʳ was deprecated in v2.2.
Please use ++-∷ʳ-eqFree instead, which does not take eq."
#-}

∷ʳ-++ :  .(eq : (suc n) + m  n + suc m) a (xs : Vec A n) {ys} 
        cast eq ((xs ∷ʳ a) ++ ys)  xs ++ (a  ys)
∷ʳ-++ _ = ∷ʳ-++-eqFree
{-# WARNING_ON_USAGE ∷ʳ-++
"Warning: ∷ʳ-++ was deprecated in v2.2.
Please use ∷ʳ-++-eqFree instead, which does not take eq."
#-}

reverse-++ :  .(eq : m + n  n + m) (xs : Vec A m) (ys : Vec A n) 
             cast eq (reverse (xs ++ ys))  reverse ys ++ reverse xs
reverse-++ _ = reverse-++-eqFree
{-# WARNING_ON_USAGE reverse-++
"Warning: reverse-++ was deprecated in v2.2.
Please use reverse-++-eqFree instead, which does not take eq."
#-}

∷-ʳ++ :  .(eq : (suc m) + n  m + suc n) a (xs : Vec A m) {ys} 
        cast eq ((a  xs) ʳ++ ys)  xs ʳ++ (a  ys)
∷-ʳ++ _ = ∷-ʳ++-eqFree
{-# WARNING_ON_USAGE ∷-ʳ++
"Warning: ∷-ʳ++ was deprecated in v2.2.
Please use ∷-ʳ++-eqFree instead, which does not take eq."
#-}

++-ʳ++ :  .(eq : m + n + o  n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs : Vec A o} 
         cast eq ((xs ++ ys) ʳ++ zs)  ys ʳ++ (xs ʳ++ zs)
++-ʳ++ _ = ++-ʳ++-eqFree
{-# WARNING_ON_USAGE ++-ʳ++
"Warning: ++-ʳ++ was deprecated in v2.2.
Please use ++-ʳ++-eqFree instead, which does not take eq."
#-}

ʳ++-ʳ++ :  .(eq : (m + n) + o  n + (m + o)) (xs : Vec A m) {ys : Vec A n} {zs} 
          cast eq ((xs ʳ++ ys) ʳ++ zs)  ys ʳ++ (xs ++ zs)
ʳ++-ʳ++ _ = ʳ++-ʳ++-eqFree
{-# WARNING_ON_USAGE ʳ++-ʳ++
"Warning: ʳ++-ʳ++ was deprecated in v2.2.
Please use ʳ++-ʳ++-eqFree instead, which does not take eq."
#-}

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 2.0

updateAt-id-relative = updateAt-id-local
{-# WARNING_ON_USAGE updateAt-id-relative
"Warning: updateAt-id-relative was deprecated in v2.0.
Please use updateAt-id-local instead."
#-}

updateAt-compose-relative = updateAt-updateAt-local
{-# WARNING_ON_USAGE updateAt-compose-relative
"Warning: updateAt-compose-relative was deprecated in v2.0.
Please use updateAt-updateAt-local instead."
#-}

updateAt-compose = updateAt-updateAt
{-# WARNING_ON_USAGE updateAt-compose
"Warning: updateAt-compose was deprecated in v2.0.
Please use updateAt-updateAt instead."
#-}

updateAt-cong-relative = updateAt-cong-local
{-# WARNING_ON_USAGE updateAt-cong-relative
"Warning: updateAt-cong-relative was deprecated in v2.0.
Please use updateAt-cong-local instead."
#-}

[]%=-compose = []%=-∘
{-# WARNING_ON_USAGE []%=-compose
"Warning: []%=-compose was deprecated in v2.0.
Please use []%=-∘ instead."
#-}

[]≔-++-inject+ :  {m n x} (xs : Vec A m) (ys : Vec A n) i 
                 (xs ++ ys) [ i ↑ˡ n ]≔ x  (xs [ i ]≔ x) ++ ys
[]≔-++-inject+ = []≔-++-↑ˡ
{-# WARNING_ON_USAGE []≔-++-inject+
"Warning: []≔-++-inject+ was deprecated in v2.0.
Please use []≔-++-↑ˡ instead."
#-}
idIsFold = id-is-foldr
{-# WARNING_ON_USAGE idIsFold
"Warning: idIsFold was deprecated in v2.0.
Please use id-is-foldr instead."
#-}
sum-++-commute = sum-++
{-# WARNING_ON_USAGE sum-++-commute
"Warning: sum-++-commute was deprecated in v2.0.
Please use sum-++ instead."
#-}
take-drop-id = take++drop≡id
{-# WARNING_ON_USAGE take-drop-id
"Warning: take-drop-id was deprecated in v2.0.
Please use take++drop≡id instead."
#-}
take-distr-zipWith = take-zipWith
{-# WARNING_ON_USAGE take-distr-zipWith
"Warning: take-distr-zipWith was deprecated in v2.0.
Please use take-zipWith instead."
#-}
take-distr-map = take-map
{-# WARNING_ON_USAGE take-distr-map
"Warning: take-distr-map was deprecated in v2.0.
Please use take-map instead."
#-}
drop-distr-zipWith = drop-zipWith
{-# WARNING_ON_USAGE drop-distr-zipWith
"Warning: drop-distr-zipWith was deprecated in v2.0.
Please use drop-zipWith instead."
#-}
drop-distr-map = drop-map
{-# WARNING_ON_USAGE drop-distr-map
"Warning: drop-distr-map was deprecated in v2.0.
Please use drop-map instead."
#-}

map-insert = map-insertAt
{-# WARNING_ON_USAGE map-insert
"Warning: map-insert was deprecated in v2.0.
Please use map-insertAt instead."
#-}
insert-lookup = insertAt-lookup
{-# WARNING_ON_USAGE insert-lookup
"Warning: insert-lookup was deprecated in v2.0.
Please use insertAt-lookup instead."
#-}
insert-punchIn = insertAt-punchIn
{-# WARNING_ON_USAGE insert-punchIn
"Warning: insert-punchIn was deprecated in v2.0.
Please use insertAt-punchIn instead."
#-}
remove-PunchOut = removeAt-punchOut
{-# WARNING_ON_USAGE remove-PunchOut
"Warning: remove-PunchOut was deprecated in v2.0.
Please use removeAt-punchOut instead."
#-}
remove-insert = removeAt-insertAt
{-# WARNING_ON_USAGE remove-insert
"Warning: remove-insert was deprecated in v2.0.
Please use removeAt-insertAt instead."
#-}
insert-remove = insertAt-removeAt
{-# WARNING_ON_USAGE insert-remove
"Warning: insert-remove was deprecated in v2.0.
Please use insertAt-removeAt instead."
#-}

lookup-inject≤-take :  m (m≤m+n : m  m + n) (i : Fin m) (xs : Vec A (m + n)) 
                      lookup xs (Fin.inject≤ i m≤m+n)  lookup (take m xs) i
lookup-inject≤-take m m≤m+n i xs = sym (begin
  lookup (take m xs) i
    ≡⟨ lookup-take-inject≤ xs i 
  lookup xs (Fin.inject≤ i _)
    ≡⟨⟩
  lookup xs (Fin.inject≤ i m≤m+n)
    ) where open ≡-Reasoning
{-# WARNING_ON_USAGE lookup-inject≤-take
"Warning: lookup-inject≤-take was deprecated in v2.0.
Please use lookup-take-inject≤ or lookup-truncate, take≡truncate instead."
#-}