------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of digits and digit expansions
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Data.Digit
import Data.Char.Properties as Char
open import Data.Nat.Base using ()
open import Data.Nat.Properties using (_≤?_)
open import Data.Fin.Properties using (inject≤-injective)
open import Data.Product.Base using (_,_; proj₁)
open import Data.Vec.Relation.Unary.Unique.Propositional using (Unique)
import Data.Vec.Relation.Unary.Unique.Propositional.Properties as Unique
open import Data.Vec.Relation.Unary.AllPairs using (allPairs?)
open import Relation.Nullary.Decidable.Core using (True; from-yes; ¬?)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
open import Function.Base using (_∘_)

module Data.Digit.Properties where

digitCharsUnique : Unique digitChars
digitCharsUnique = from-yes (allPairs?  x y  ¬? (x Char.≟ y)) digitChars)

module _ (base : ) where
  module _ {base≥2 base≥2′ : True (2 ≤? base)} where
    toDigits-injective :  n m  proj₁ (toDigits base {base≥2} n)  proj₁ (toDigits base {base≥2′} m)  n  m
    toDigits-injective n m eq with toDigits base {base≥2} n | toDigits base {base≥2′} m
    toDigits-injective ._ ._ refl | _ , refl | ._ , refl = refl

  module _ {base≤16 base≤16′ : True (base ≤? 16)} where
    showDigit-injective : (n m : Digit base)  showDigit {base} {base≤16} n  showDigit {base} {base≤16′} m  n  m
    showDigit-injective n m = inject≤-injective _ _ n m  Unique.lookup-injective digitCharsUnique _ _