{-# OPTIONS --cubical-compatible --safe #-}
open import Level
module Algebra.Module.Construct.Zero {c ℓ : Level} where
open import Algebra.Bundles
open import Algebra.Module.Bundles
open import Data.Unit.Polymorphic
open import Relation.Binary.Core using (Rel)
private
variable
r s ℓr ℓs : Level
module ℤero where
infix 4 _≈ᴹ_
Carrierᴹ : Set c
Carrierᴹ = ⊤
_≈ᴹ_ : Rel Carrierᴹ ℓ
_ ≈ᴹ _ = ⊤
rawLeftSemimodule : {R : Set r} → RawLeftSemimodule R c ℓ
rawLeftSemimodule = record { ℤero }
rawLeftModule : {R : Set r} → RawLeftModule R c ℓ
rawLeftModule = record { ℤero }
rawRightSemimodule : {R : Set r} → RawRightSemimodule R c ℓ
rawRightSemimodule = record { ℤero }
rawRightModule : {R : Set r} → RawRightModule R c ℓ
rawRightModule = record { ℤero }
rawBisemimodule : {R : Set r} {S : Set s} → RawBisemimodule R S c ℓ
rawBisemimodule = record { ℤero }
rawBimodule : {R : Set r} {S : Set s} → RawBimodule R S c ℓ
rawBimodule = record { ℤero }
rawSemimodule : {R : Set r} → RawSemimodule R c ℓ
rawSemimodule = record { ℤero }
rawModule : {R : Set r} → RawModule R c ℓ
rawModule = record { ℤero }
leftSemimodule : {R : Semiring r ℓr} → LeftSemimodule R c ℓ
leftSemimodule = record { ℤero }
rightSemimodule : {S : Semiring s ℓs} → RightSemimodule S c ℓ
rightSemimodule = record { ℤero }
bisemimodule :
{R : Semiring r ℓr} {S : Semiring s ℓs} → Bisemimodule R S c ℓ
bisemimodule = record { ℤero }
semimodule : {R : CommutativeSemiring r ℓr} → Semimodule R c ℓ
semimodule = record { ℤero }
leftModule : {R : Ring r ℓr} → LeftModule R c ℓ
leftModule = record { ℤero }
rightModule : {S : Ring s ℓs} → RightModule S c ℓ
rightModule = record { ℤero }
bimodule : {R : Ring r ℓr} {S : Ring s ℓs} → Bimodule R S c ℓ
bimodule = record { ℤero }
⟨module⟩ : {R : CommutativeRing r ℓr} → Module R c ℓ
⟨module⟩ = record { ℤero }