------------------------------------------------------------------------
-- The Agda standard library
--
-- Property that elements are grouped
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Relation.Unary.Grouped where

open import Data.List.Base using (List; []; _∷_; map)
open import Data.List.Relation.Unary.All as All using (All; []; _∷_; all?)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Data.Product.Base using (_×_; _,_)
open import Relation.Binary.Core using (REL; Rel)
open import Relation.Binary.Definitions as B
open import Relation.Unary as U using (Pred)
open import Relation.Nullary.Negation using (¬_)
open import Relation.Nullary.Decidable as Dec using (yes; ¬?; _⊎-dec_; _×-dec_)
open import Level using (Level; _⊔_)

private
  variable
    a  : Level
    A : Set a
    x y : A
    xs : List A

------------------------------------------------------------------------
-- Definition

infixr 5 _∷≉_ _∷≈_

data Grouped {A : Set a} (_≈_ : Rel A ) : Pred (List A) (a  ) where
  [] : Grouped _≈_ []
  _∷≉_ : All  y  ¬ (x  y)) xs  Grouped _≈_ xs  Grouped _≈_ (x  xs)
  _∷≈_ : x  y  Grouped _≈_ (y  xs)  Grouped _≈_ (x  y  xs)

------------------------------------------------------------------------
-- Basic properties

module _ {_≈_ : Rel A } where

  grouped? : B.Decidable _≈_  U.Decidable (Grouped _≈_)
  grouped? _≟_ [] = yes []
  grouped? _≟_ (x  []) = yes ([] ∷≉ [])
  grouped? _≟_ (x  y  xs) =
    Dec.map′ from to ((x  y ⊎-dec all?  z  ¬? (x  z)) (y  xs)) ×-dec (grouped? _≟_ (y  xs)))
    where
    from : ((x  y)  All  z  ¬ (x  z)) (y  xs)) × Grouped _≈_ (y  xs)  Grouped _≈_ (x  y  xs)
    from (inj₁ x≈y          , grouped[y∷xs]) = x≈y          ∷≈ grouped[y∷xs]
    from (inj₂ all[x≉,y∷xs] , grouped[y∷xs]) = all[x≉,y∷xs] ∷≉ grouped[y∷xs]

    to : Grouped _≈_ (x  y  xs)  ((x  y)  All  z  ¬ (x  z)) (y  xs)) × Grouped _≈_ (y  xs)
    to (all[x≉,y∷xs] ∷≉ grouped[y∷xs]) = inj₂ all[x≉,y∷xs] , grouped[y∷xs]
    to (x≈y          ∷≈ grouped[y∷xs]) = inj₁ x≈y , grouped[y∷xs]