{-# OPTIONS --cubical-compatible --safe #-}
open import Data.Product.Base
using (map₁; map₂; ∃; _×_; Σ-syntax; proj₁; _,_; -,_)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Structures using (IsStrictTotalOrder)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong; subst)
import Data.Tree.AVL.Value
module Data.Tree.AVL.IndexedMap
{i k v ℓ}
{Index : Set i} {Key : Index → Set k} (Value : Index → Set v)
{_<_ : Rel (∃ Key) ℓ}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
import Data.Tree.AVL
open import Data.Bool.Base using (Bool)
open import Data.List.Base as List using (List)
open import Data.Maybe.Base as Maybe using (Maybe)
open import Data.Nat.Base using (ℕ)
open import Function.Base
open import Level using (Level; _⊔_)
private
variable
a : Level
A : Set a
KV : Set (i ⊔ k ⊔ v)
KV = ∃ λ i → Key i × Value i
private
fromKV : KV → Σ[ ik ∈ ∃ Key ] Value (proj₁ ik)
fromKV (i , k , v) = ((i , k) , v)
toKV : Σ[ ik ∈ ∃ Key ] Value (proj₁ ik) → KV
toKV ((i , k) , v) = (i , k , v)
private
open module AVL =
Data.Tree.AVL (record { isStrictTotalOrder = isStrictTotalOrder })
using () renaming (Tree to Map′)
Map = Map′ (AVL.MkValue (Value ∘ proj₁) (subst Value ∘′ cong proj₁))
empty : Map
empty = AVL.empty
singleton : ∀ {i} → Key i → Value i → Map
singleton k v = AVL.singleton (-, k) v
insert : ∀ {i} → Key i → Value i → Map → Map
insert k v = AVL.insert (-, k) v
delete : ∀ {i} → Key i → Map → Map
delete k = AVL.delete (-, k)
lookup : ∀ {i} → Map → Key i → Maybe (Value i)
lookup m k = AVL.lookup m (-, k)
member : ∀ {i} → Key i → Map → Bool
member k = AVL.member (-, k)
headTail : Map → Maybe (KV × Map)
headTail m = Maybe.map (map₁ (toKV ∘′ AVL.toPair)) (AVL.headTail m)
initLast : Map → Maybe (Map × KV)
initLast m = Maybe.map (map₂ (toKV ∘′ AVL.toPair)) (AVL.initLast m)
foldr : (∀ {k} → Value k → A → A) → A → Map → A
foldr cons = AVL.foldr cons
fromList : List KV → Map
fromList = AVL.fromList ∘ List.map (AVL.fromPair ∘′ fromKV)
toList : Map → List KV
toList = List.map (toKV ∘′ AVL.toPair) ∘ AVL.toList
size : Map → ℕ
size = AVL.size
infixl 4 _∈?_
_∈?_ : ∀ {i} → Key i → Map → Bool
_∈?_ = member
{-# WARNING_ON_USAGE _∈?_
"Warning: _∈?_ was deprecated in v2.0.
Please use member instead."
#-}