{-# OPTIONS --cubical-compatible --safe #-}
module Data.Vec.Relation.Unary.Any {a} {A : Set a} where
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Nat.Base using (ℕ; zero; suc; NonZero)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Vec.Base as Vec using (Vec; []; [_]; _∷_)
open import Data.Product.Base as Product using (∃; _,_)
open import Level using (Level; _⊔_)
open import Relation.Nullary.Negation using (¬_; contradiction)
open import Relation.Nullary.Decidable as Dec using (no; _⊎-dec_)
open import Relation.Unary
private
variable
p q : Level
P : Pred A p
Q : Pred A q
n : ℕ
xs : Vec A n
data Any (P : Pred A p) : ∀ {n} → Vec A n → Set (a ⊔ p) where
here : ∀ {n x} {xs : Vec A n} (px : P x) → Any P (x ∷ xs)
there : ∀ {n x} {xs : Vec A n} (pxs : Any P xs) → Any P (x ∷ xs)
head : ∀ {x} → ¬ Any P xs → Any P (x ∷ xs) → P x
head ¬pxs (here px) = px
head ¬pxs (there pxs) = contradiction pxs ¬pxs
tail : ∀ {x} → ¬ P x → Any P (x ∷ xs) → Any P xs
tail ¬px (here px) = contradiction px ¬px
tail ¬px (there pxs) = pxs
toSum : ∀ {x} → Any P (x ∷ xs) → P x ⊎ Any P xs
toSum (here px) = inj₁ px
toSum (there pxs) = inj₂ pxs
fromSum : ∀ {x} → P x ⊎ Any P xs → Any P (x ∷ xs)
fromSum = [ here , there ]′
map : P ⊆ Q → ∀ {n} → Any P {n} ⊆ Any Q {n}
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
index : Any P {n} xs → Fin n
index (here px) = zero
index (there pxs) = suc (index pxs)
lookup : Any P xs → A
lookup {xs = xs} p = Vec.lookup xs (index p)
satisfied : Any P xs → ∃ P
satisfied (here px) = _ , px
satisfied (there pxs) = satisfied pxs
any? : Decidable P → ∀ {n} → Decidable (Any P {n})
any? P? [] = no λ()
any? P? (x ∷ xs) = Dec.map′ fromSum toSum (P? x ⊎-dec any? P? xs)
satisfiable : Satisfiable P → ∀ {n} → Satisfiable (Any P {suc n})
satisfiable (x , p) {zero} = x ∷ [] , here p
satisfiable (x , p) {suc n} = Product.map (x ∷_) there (satisfiable (x , p))
any = any?
{-# WARNING_ON_USAGE any
"Warning: any was deprecated in v1.4.
Please use any? instead."
#-}