{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Fresh.Properties where
open import Level using (Level; _⊔_)
open import Data.Product.Base using (_,_)
open import Relation.Nullary
open import Relation.Unary as U using (Pred)
import Relation.Binary.Definitions as B
open import Relation.Binary.Core using (Rel)
open import Data.List.Fresh
private
variable
a b e p r : Level
A : Set a
B : Set b
module _ {R : Rel A r} {_≈_ : Rel A e} (R≈ : R B.Respectsˡ _≈_) where
fresh-respectsˡ : ∀ {x y} {xs : List# A R} → x ≈ y → x # xs → y # xs
fresh-respectsˡ {xs = []} x≈y x#xs = _
fresh-respectsˡ {xs = x ∷# xs} x≈y (r , x#xs) =
R≈ x≈y r , fresh-respectsˡ x≈y x#xs
Empty⇒¬NonEmpty : {R : Rel A r} {xs : List# A R} → Empty xs → ¬ (NonEmpty xs)
Empty⇒¬NonEmpty [] ()
NonEmpty⇒¬Empty : {R : Rel A r} {xs : List# A R} → NonEmpty xs → ¬ (Empty xs)
NonEmpty⇒¬Empty () []
empty? : {R : Rel A r} (xs : List# A R) → Dec (Empty xs)
empty? [] = yes []
empty? (_ ∷# _) = no (λ ())
nonEmpty? : {R : Rel A r} (xs : List# A R) → Dec (NonEmpty xs)
nonEmpty? [] = no (λ ())
nonEmpty? (cons x xs pr) = yes (cons x xs pr)