{-# OPTIONS --cubical-compatible --safe #-}
module Algebra.Solver.CommutativeMonoid.Example where
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
open import Data.Bool.Base using (_∨_)
open import Data.Bool.Properties using (∨-commutativeMonoid)
open import Data.Fin.Base using (zero; suc)
open import Data.Vec.Base using ([]; _∷_)
open import Algebra.Solver.CommutativeMonoid ∨-commutativeMonoid
test : ∀ x y z → (x ∨ y) ∨ (x ∨ z) ≡ (z ∨ y) ∨ (x ∨ x)
test a b c = let _∨_ = _⊕_ in
prove 3 ((x ∨ y) ∨ (x ∨ z)) ((z ∨ y) ∨ (x ∨ x)) (a ∷ b ∷ c ∷ [])
where
x = var zero
y = var (suc zero)
z = var (suc (suc zero))