{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Zipper.Properties where
open import Data.List.Base as List using (List ; [] ; _∷_)
open import Data.List.Properties
open import Data.List.Zipper
using (Zipper; toList; left; right; mkZipper; reverse; _ˡ++_; _ʳ++_;
_++ˡ_; _++ʳ_; map; foldr)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.All using (All; just; nothing)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; cong; sym)
open import Relation.Binary.PropositionalEquality.Properties
using (module ≡-Reasoning)
open ≡-Reasoning
open import Function.Base using (_on_; _$′_; _$_; flip)
module _ {a} {A : Set a} where
toList-left-identity : (zp : Zipper A) → All ((_≡_ on toList) zp) (left zp)
toList-left-identity (mkZipper [] val) = nothing
toList-left-identity (mkZipper (x ∷ ctx) val) = just $′ begin
List.reverse (x ∷ ctx) List.++ val
≡⟨ cong (List._++ val) (unfold-reverse x ctx) ⟩
(List.reverse ctx List.++ List.[ x ]) List.++ val
≡⟨ ++-assoc (List.reverse ctx) List.[ x ] val ⟩
toList (mkZipper ctx (x ∷ val))
∎
toList-right-identity : (zp : Zipper A) → All ((_≡_ on toList) zp) (right zp)
toList-right-identity (mkZipper ctx []) = nothing
toList-right-identity (mkZipper ctx (x ∷ val)) = just $′ begin
List.reverse ctx List.++ x ∷ val
≡⟨ sym (++-assoc (List.reverse ctx) List.[ x ] val) ⟩
(List.reverse ctx List.++ List.[ x ]) List.++ val
≡⟨ cong (List._++ val) (sym (unfold-reverse x ctx)) ⟩
List.reverse (x ∷ ctx) List.++ val
∎
toList-reverse : (zp : Zipper A) → toList (reverse zp) ≡ List.reverse (toList zp)
toList-reverse (mkZipper ctx val) = begin
List.reverse val List.++ ctx
≡⟨ cong (List.reverse val List.++_) (sym (reverse-involutive ctx)) ⟩
List.reverse val List.++ List.reverse (List.reverse ctx)
≡⟨ sym (reverse-++ (List.reverse ctx) val) ⟩
List.reverse (List.reverse ctx List.++ val)
∎
toList-ˡ++ : ∀ xs (zp : Zipper A) → toList (xs ˡ++ zp) ≡ xs List.++ toList zp
toList-ˡ++ xs (mkZipper ctx val) = begin
List.reverse (ctx List.++ List.reverse xs) List.++ val
≡⟨ cong (List._++ _) (reverse-++ ctx (List.reverse xs)) ⟩
(List.reverse (List.reverse xs) List.++ List.reverse ctx) List.++ val
≡⟨ ++-assoc (List.reverse (List.reverse xs)) (List.reverse ctx) val ⟩
List.reverse (List.reverse xs) List.++ List.reverse ctx List.++ val
≡⟨ cong (List._++ _) (reverse-involutive xs) ⟩
xs List.++ List.reverse ctx List.++ val
∎
ˡ++-assoc : ∀ xs ys (zp : Zipper A) → xs ˡ++ (ys ˡ++ zp) ≡ (xs List.++ ys) ˡ++ zp
ˡ++-assoc xs ys (mkZipper ctx val) = cong (λ ctx → mkZipper ctx val) $ begin
(ctx List.++ List.reverse ys) List.++ List.reverse xs
≡⟨ ++-assoc ctx _ _ ⟩
ctx List.++ List.reverse ys List.++ List.reverse xs
≡⟨ cong (ctx List.++_) (sym (reverse-++ xs ys)) ⟩
ctx List.++ List.reverse (xs List.++ ys)
∎
ʳ++-assoc : ∀ xs ys (zp : Zipper A) → xs ʳ++ (ys ʳ++ zp) ≡ (ys List.++ xs) ʳ++ zp
ʳ++-assoc xs ys (mkZipper ctx val) = cong (λ ctx → mkZipper ctx val) $ begin
List.reverse xs List.++ List.reverse ys List.++ ctx
≡⟨ sym (++-assoc (List.reverse xs) (List.reverse ys) ctx) ⟩
(List.reverse xs List.++ List.reverse ys) List.++ ctx
≡⟨ cong (List._++ ctx) (sym (reverse-++ ys xs)) ⟩
List.reverse (ys List.++ xs) List.++ ctx
∎
++ˡ-assoc : ∀ xs ys (zp : Zipper A) → zp ++ˡ xs ++ˡ ys ≡ zp ++ˡ (ys List.++ xs)
++ˡ-assoc xs ys (mkZipper ctx val) = cong (mkZipper ctx) $ sym $ ++-assoc ys xs val
toList-++ʳ : ∀ (zp : Zipper A) xs → toList (zp ++ʳ xs) ≡ toList zp List.++ xs
toList-++ʳ (mkZipper ctx val) xs = begin
List.reverse ctx List.++ val List.++ xs
≡⟨ sym (++-assoc (List.reverse ctx) val xs) ⟩
(List.reverse ctx List.++ val) List.++ xs
∎
++ʳ-assoc : ∀ xs ys (zp : Zipper A) → zp ++ʳ xs ++ʳ ys ≡ zp ++ʳ (xs List.++ ys)
++ʳ-assoc xs ys (mkZipper ctx val) = cong (mkZipper ctx) $ ++-assoc val xs ys
module _ {a b} {A : Set a} {B : Set b} where
toList-map : ∀ (f : A → B) zp → toList (map f zp) ≡ List.map f (toList zp)
toList-map f zp@(mkZipper ctx val) = begin
List.reverse (List.map f ctx) List.++ List.map f val
≡⟨ cong (List._++ _) (sym (reverse-map f ctx)) ⟩
List.map f (List.reverse ctx) List.++ List.map f val
≡⟨ sym (map-++ f (List.reverse ctx) val) ⟩
List.map f (List.reverse ctx List.++ val)
∎
toList-foldr : ∀ (c : A → B → B) n zp → foldr c n zp ≡ List.foldr c n (toList zp)
toList-foldr c n (mkZipper ctx val) = begin
List.foldl (flip c) (List.foldr c n val) ctx
≡⟨ sym (reverse-foldr c (List.foldr c n val) ctx) ⟩
List.foldr c (List.foldr c n val) (List.reverse ctx)
≡⟨ sym (foldr-++ c n (List.reverse ctx) val) ⟩
List.foldr c n (List.reverse ctx List.++ val)
∎
toList-reverse-commute = toList-reverse
{-# WARNING_ON_USAGE toList-reverse-commute
"Warning: toList-reverse-commute was deprecated in v2.0.
Please use toList-reverse instead."
#-}
toList-ˡ++-commute = toList-ˡ++
{-# WARNING_ON_USAGE toList-ˡ++-commute
"Warning: toList-ˡ++-commute was deprecated in v2.0.
Please use toList-ˡ++ instead."
#-}
toList-++ʳ-commute = toList-++ʳ
{-# WARNING_ON_USAGE toList-++ʳ-commute
"Warning: toList-++ʳ-commute was deprecated in v2.0.
Please use toList-++ʳ instead."
#-}
toList-map-commute = toList-map
{-# WARNING_ON_USAGE toList-map-commute
"Warning: toList-map-commute was deprecated in v2.0.
Please use toList-map instead."
#-}
toList-foldr-commute = toList-foldr
{-# WARNING_ON_USAGE toList-foldr-commute
"Warning: toList-foldr-commute was deprecated in v2.0.
Please use toList-foldr instead."
#-}