{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Structures
using (IsStrictPartialOrder; IsDecStrictPartialOrder; IsStrictTotalOrder)
open import Relation.Binary.Definitions
using (Asymmetric; Transitive; Decidable; Irrelevant; Irreflexive; Trans; Trichotomous; tri≈; tri<; tri>; _Respectsˡ_; _Respectsʳ_; _Respects₂_)
module Relation.Binary.Construct.Add.Infimum.Strict
{a ℓ} {A : Set a} (_<_ : Rel A ℓ) where
open import Level using (_⊔_)
open import Data.Product.Base using (_,_; map)
open import Function.Base
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; subst)
import Relation.Binary.PropositionalEquality.Properties as ≡
import Relation.Binary.Construct.Add.Infimum.Equality as Equality
import Relation.Binary.Construct.Add.Infimum.NonStrict as NonStrict
open import Relation.Nullary hiding (Irrelevant)
open import Relation.Nullary.Construct.Add.Infimum
import Relation.Nullary.Decidable as Dec
infix 4 _<₋_
data _<₋_ : Rel (A ₋) (a ⊔ ℓ) where
⊥₋<[_] : (l : A) → ⊥₋ <₋ [ l ]
[_] : {k l : A} → k < l → [ k ] <₋ [ l ]
[<]-injective : ∀ {k l} → [ k ] <₋ [ l ] → k < l
[<]-injective [ p ] = p
<₋-asym : Asymmetric _<_ → Asymmetric _<₋_
<₋-asym <-asym [ p ] [ q ] = <-asym p q
<₋-trans : Transitive _<_ → Transitive _<₋_
<₋-trans <-trans ⊥₋<[ l ] [ q ] = ⊥₋<[ _ ]
<₋-trans <-trans [ p ] [ q ] = [ <-trans p q ]
<₋-dec : Decidable _<_ → Decidable _<₋_
<₋-dec _<?_ ⊥₋ ⊥₋ = no (λ ())
<₋-dec _<?_ ⊥₋ [ l ] = yes ⊥₋<[ l ]
<₋-dec _<?_ [ k ] ⊥₋ = no (λ ())
<₋-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l)
<₋-irrelevant : Irrelevant _<_ → Irrelevant _<₋_
<₋-irrelevant <-irr ⊥₋<[ l ] ⊥₋<[ l ] = refl
<₋-irrelevant <-irr [ p ] [ q ] = cong _ (<-irr p q)
module _ {r} {_≤_ : Rel A r} where
open NonStrict _≤_
<₋-transʳ : Trans _≤_ _<_ _<_ → Trans _≤₋_ _<₋_ _<₋_
<₋-transʳ <-transʳ (⊥₋≤ .⊥₋) (⊥₋<[ l ]) = ⊥₋<[ l ]
<₋-transʳ <-transʳ (⊥₋≤ l) [ q ] = ⊥₋<[ _ ]
<₋-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ]
<₋-transˡ : Trans _<_ _≤_ _<_ → Trans _<₋_ _≤₋_ _<₋_
<₋-transˡ <-transˡ ⊥₋<[ l ] [ q ] = ⊥₋<[ _ ]
<₋-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ]
<₋-cmp-≡ : Trichotomous _≡_ _<_ → Trichotomous _≡_ _<₋_
<₋-cmp-≡ <-cmp ⊥₋ ⊥₋ = tri≈ (λ ()) refl (λ ())
<₋-cmp-≡ <-cmp ⊥₋ [ l ] = tri< ⊥₋<[ l ] (λ ()) (λ ())
<₋-cmp-≡ <-cmp [ k ] ⊥₋ = tri> (λ ()) (λ ()) ⊥₋<[ k ]
<₋-cmp-≡ <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ []-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a refl ¬c = tri≈ (¬a ∘ [<]-injective) refl (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ []-injective) [ c ]
<₋-irrefl-≡ : Irreflexive _≡_ _<_ → Irreflexive _≡_ _<₋_
<₋-irrefl-≡ <-irrefl refl [ x ] = <-irrefl refl x
<₋-respˡ-≡ : _<₋_ Respectsˡ _≡_
<₋-respˡ-≡ = subst (_<₋ _)
<₋-respʳ-≡ : _<₋_ Respectsʳ _≡_
<₋-respʳ-≡ = subst (_ <₋_)
<₋-resp-≡ : _<₋_ Respects₂ _≡_
<₋-resp-≡ = <₋-respʳ-≡ , <₋-respˡ-≡
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<₋-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈₋_ _<₋_
<₋-cmp <-cmp ⊥₋ ⊥₋ = tri≈ (λ ()) ⊥₋≈⊥₋ (λ ())
<₋-cmp <-cmp ⊥₋ [ l ] = tri< ⊥₋<[ l ] (λ ()) (λ ())
<₋-cmp <-cmp [ k ] ⊥₋ = tri> (λ ()) (λ ()) ⊥₋<[ k ]
<₋-cmp <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ]
<₋-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈₋_ _<₋_
<₋-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q
<₋-respˡ-≈₋ : _<_ Respectsˡ _≈_ → _<₋_ Respectsˡ _≈₋_
<₋-respˡ-≈₋ <-respˡ-≈ ⊥₋≈⊥₋ q = q
<₋-respˡ-≈₋ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ]
<₋-respʳ-≈₋ : _<_ Respectsʳ _≈_ → _<₋_ Respectsʳ _≈₋_
<₋-respʳ-≈₋ <-respʳ-≈ ⊥₋≈⊥₋ q = q
<₋-respʳ-≈₋ <-respʳ-≈ [ p ] ⊥₋<[ l ] = ⊥₋<[ _ ]
<₋-respʳ-≈₋ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ]
<₋-resp-≈₋ : _<_ Respects₂ _≈_ → _<₋_ Respects₂ _≈₋_
<₋-resp-≈₋ = map <₋-respʳ-≈₋ <₋-respˡ-≈₋
<₋-isStrictPartialOrder-≡ : IsStrictPartialOrder _≡_ _<_ →
IsStrictPartialOrder _≡_ _<₋_
<₋-isStrictPartialOrder-≡ strict = record
{ isEquivalence = ≡.isEquivalence
; irrefl = <₋-irrefl-≡ irrefl
; trans = <₋-trans trans
; <-resp-≈ = <₋-resp-≡
} where open IsStrictPartialOrder strict
<₋-isDecStrictPartialOrder-≡ : IsDecStrictPartialOrder _≡_ _<_ →
IsDecStrictPartialOrder _≡_ _<₋_
<₋-isDecStrictPartialOrder-≡ dectot = record
{ isStrictPartialOrder = <₋-isStrictPartialOrder-≡ isStrictPartialOrder
; _≟_ = ≡-dec _≟_
; _<?_ = <₋-dec _<?_
} where open IsDecStrictPartialOrder dectot
<₋-isStrictTotalOrder-≡ : IsStrictTotalOrder _≡_ _<_ →
IsStrictTotalOrder _≡_ _<₋_
<₋-isStrictTotalOrder-≡ strictot = record
{ isStrictPartialOrder = <₋-isStrictPartialOrder-≡ isStrictPartialOrder
; compare = <₋-cmp-≡ compare
} where open IsStrictTotalOrder strictot
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<₋-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ →
IsStrictPartialOrder _≈₋_ _<₋_
<₋-isStrictPartialOrder strict = record
{ isEquivalence = ≈₋-isEquivalence isEquivalence
; irrefl = <₋-irrefl irrefl
; trans = <₋-trans trans
; <-resp-≈ = <₋-resp-≈₋ <-resp-≈
} where open IsStrictPartialOrder strict
<₋-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ →
IsDecStrictPartialOrder _≈₋_ _<₋_
<₋-isDecStrictPartialOrder dectot = record
{ isStrictPartialOrder = <₋-isStrictPartialOrder isStrictPartialOrder
; _≟_ = ≈₋-dec _≟_
; _<?_ = <₋-dec _<?_
} where open IsDecStrictPartialOrder dectot
<₋-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ →
IsStrictTotalOrder _≈₋_ _<₋_
<₋-isStrictTotalOrder strictot = record
{ isStrictPartialOrder = <₋-isStrictPartialOrder isStrictPartialOrder
; compare = <₋-cmp compare
} where open IsStrictTotalOrder strictot