{-# OPTIONS --cubical-compatible --safe #-}
open import Data.List.Base
open import Data.List.Membership.Setoid.Properties as Membership
open import Data.List.Relation.Unary.Any using (index)
open import Data.List.Relation.Unary.Any.Properties using (lookup-index)
open import Data.List.Relation.Unary.Enumerates.Setoid
open import Data.Sum.Base using (inj₁; inj₂)
open import Data.Sum.Relation.Binary.Pointwise
using (_⊎ₛ_; inj₁; inj₂)
open import Data.Product.Base using (_,_; proj₁; proj₂)
open import Data.Product.Relation.Binary.Pointwise.NonDependent
using (_×ₛ_)
open import Function.Base using (_∘_)
open import Function.Bundles using (Surjection)
open import Function.Definitions using (Surjective)
open import Function.Consequences using (strictlySurjective⇒surjective)
open import Level
open import Relation.Binary.Bundles using (Setoid; DecSetoid)
open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_)
open import Relation.Binary.Properties.Setoid using (respʳ-flip)
module Data.List.Relation.Unary.Enumerates.Setoid.Properties where
private
variable
a b ℓ₁ ℓ₂ : Level
module _ (S : Setoid a ℓ₁) (T : Setoid b ℓ₂) (surj : Surjection S T) where
open Surjection surj
map⁺ : ∀ {xs} → IsEnumeration S xs → IsEnumeration T (map to xs)
map⁺ _∈xs y with (x , fx≈y) ← strictlySurjective y =
∈-resp-≈ T fx≈y (∈-map⁺ S T cong (x ∈xs))
module _ (S : Setoid a ℓ₁) where
++⁺ˡ : ∀ {xs} ys → IsEnumeration S xs → IsEnumeration S (xs ++ ys)
++⁺ˡ _ _∈xs v = Membership.∈-++⁺ˡ S (v ∈xs)
++⁺ʳ : ∀ xs {ys} → IsEnumeration S ys → IsEnumeration S (xs ++ ys)
++⁺ʳ _ _∈ys v = Membership.∈-++⁺ʳ S _ (v ∈ys)
module _ (S : Setoid a ℓ₁) (T : Setoid b ℓ₂) where
++⁺ : ∀ {xs ys} → IsEnumeration S xs → IsEnumeration T ys →
IsEnumeration (S ⊎ₛ T) (map inj₁ xs ++ map inj₂ ys)
++⁺ _∈xs _ (inj₁ x) = ∈-++⁺ˡ (S ⊎ₛ T) (∈-map⁺ S (S ⊎ₛ T) inj₁ (x ∈xs))
++⁺ _ _∈ys (inj₂ y) = ∈-++⁺ʳ (S ⊎ₛ T) _ (∈-map⁺ T (S ⊎ₛ T) inj₂ (y ∈ys))
module _ (S : Setoid a ℓ₁) (T : Setoid b ℓ₂) where
cartesianProduct⁺ : ∀ {xs ys} → IsEnumeration S xs → IsEnumeration T ys →
IsEnumeration (S ×ₛ T) (cartesianProduct xs ys)
cartesianProduct⁺ _∈xs _∈ys (x , y) = ∈-cartesianProduct⁺ S T (x ∈xs) (y ∈ys)
module _ (S? : DecSetoid a ℓ₁) where
open DecSetoid S? renaming (setoid to S)
deduplicate⁺ : ∀ {xs} → IsEnumeration S xs →
IsEnumeration S (deduplicate _≟_ xs)
deduplicate⁺ = ∈-deduplicate⁺ S _≟_ (respʳ-flip S) ∘_
module _ (S : Setoid a ℓ₁) where
open Setoid S
lookup-surjective : ∀ {xs} → IsEnumeration S xs →
Surjective _≡_ _≈_ (lookup xs)
lookup-surjective _∈xs = strictlySurjective⇒surjective
trans (λ { ≡.refl → refl}) (λ y → index (y ∈xs) , sym (lookup-index (y ∈xs)))