{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Core using (Op₂)
open import Data.Rational.Base
open import Level using (Level)
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
open import Function.Metric.Rational.Core
import Function.Metric.Definitions as Base
module Function.Metric.Rational.Definitions where
private
variable
a ℓ : Level
A : Set a
Congruent : Rel A ℓ → DistanceFunction A → Set _
Congruent _≈ₐ_ d = Base.Congruent _≈ₐ_ _≡_ d
Indiscernable : Rel A ℓ → DistanceFunction A → Set _
Indiscernable _≈ₐ_ d = Base.Indiscernable _≈ₐ_ _≡_ d 0ℚ
Definite : Rel A ℓ → DistanceFunction A → Set _
Definite _≈ₐ_ d = Base.Definite _≈ₐ_ _≡_ d 0ℚ
Symmetric : DistanceFunction A → Set _
Symmetric = Base.Symmetric _≡_
Bounded : DistanceFunction A → Set _
Bounded = Base.Bounded _≤_
TranslationInvariant : Op₂ A → DistanceFunction A → Set _
TranslationInvariant = Base.TranslationInvariant _≡_
TriangleInequality : DistanceFunction A → Set _
TriangleInequality = Base.TriangleInequality _≤_ _+_
MaxTriangleInequality : DistanceFunction A → Set _
MaxTriangleInequality = Base.TriangleInequality _≤_ _⊔_
Contracting : (A → A) → DistanceFunction A → Set _
Contracting = Base.Contracting _≤_
ContractingOnOrbits : (A → A) → DistanceFunction A → Set _
ContractingOnOrbits = Base.ContractingOnOrbits _≤_
StrictlyContracting : Rel A ℓ → (A → A) → DistanceFunction A → Set _
StrictlyContracting _≈_ = Base.StrictlyContracting _≈_ _<_
StrictlyContractingOnOrbits : Rel A ℓ → (A → A) → DistanceFunction A → Set _
StrictlyContractingOnOrbits _≈_ = Base.StrictlyContractingOnOrbits _≈_ _<_