{-# OPTIONS --cubical-compatible --safe #-}
module Effect.Monad.Continuation where
open import Effect.Applicative.Indexed using (IFun)
open import Effect.Monad using (RawMonad)
open import Function.Identity.Effectful as Id using (Identity)
open import Effect.Monad.Indexed using (RawIMonad)
open import Function.Base using (flip)
open import Level using (Level; _⊔_; suc)
private
variable
i f : Level
I : Set i
DContT : (I → Set f) → (Set f → Set f) → IFun I f
DContT K M r₂ r₁ a = (a → M (K r₁)) → M (K r₂)
DCont : (I → Set f) → IFun I f
DCont K = DContT K Identity
DContTIMonad : ∀ (K : I → Set f) {M} → RawMonad M → RawIMonad (DContT K M)
DContTIMonad K Mon = record
{ return = λ a k → k a
; _>>=_ = λ c f k → c (flip f k)
}
where open RawMonad Mon
DContIMonad : (K : I → Set f) → RawIMonad (DCont K)
DContIMonad K = DContTIMonad K Id.monad
record RawIMonadDCont {I : Set i} (K : I → Set f)
(M : IFun I f) : Set (i ⊔ suc f) where
field
monad : RawIMonad M
reset : ∀ {r₁ r₂ r₃} → M r₁ r₂ (K r₂) → M r₃ r₃ (K r₁)
shift : ∀ {a r₁ r₂ r₃ r₄} →
((a → M r₁ r₁ (K r₂)) → M r₃ r₄ (K r₄)) → M r₃ r₂ a
open RawIMonad monad public
DContTIMonadDCont : ∀ (K : I → Set f) {M} →
RawMonad M → RawIMonadDCont K (DContT K M)
DContTIMonadDCont K Mon = record
{ monad = DContTIMonad K Mon
; reset = λ e k → e pure >>= k
; shift = λ e k → e (λ a k′ → (k a) >>= k′) pure
}
where
open RawMonad Mon
DContIMonadDCont : (K : I → Set f) → RawIMonadDCont K (DCont K)
DContIMonadDCont K = DContTIMonadDCont K Id.monad