{-# OPTIONS --cubical-compatible --safe #-}
module Algebra.Construct.Pointwise {a} (A : Set a) where
open import Algebra.Bundles
open import Algebra.Core using (Op₁; Op₂)
open import Algebra.Structures
open import Data.Product.Base using (_,_)
open import Function.Base using (id; _∘′_; const)
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
private
variable
c ℓ : Level
C : Set c
_≈_ : Rel C ℓ
ε 0# 1# : C
_⁻¹ -_ : Op₁ C
_∙_ _+_ _*_ : Op₂ C
lift₀ : C → A → C
lift₀ = const
lift₁ : Op₁ C → Op₁ (A → C)
lift₁ = _∘′_
lift₂ : Op₂ C → Op₂ (A → C)
lift₂ _∙_ g h x = (g x) ∙ (h x)
liftRel : Rel C ℓ → Rel (A → C) (a ⊔ ℓ)
liftRel _≈_ g h = ∀ x → (g x) ≈ (h x)
isEquivalence : IsEquivalence _≈_ → IsEquivalence (liftRel _≈_)
isEquivalence isEquivalence = record
{ refl = λ {f} _ → refl {f _}
; sym = λ f≈g _ → sym (f≈g _)
; trans = λ f≈g g≈h _ → trans (f≈g _) (g≈h _)
}
where open IsEquivalence isEquivalence
isMagma : IsMagma _≈_ _∙_ → IsMagma (liftRel _≈_) (lift₂ _∙_)
isMagma isMagma = record
{ isEquivalence = isEquivalence M.isEquivalence
; ∙-cong = λ g h _ → M.∙-cong (g _) (h _)
}
where module M = IsMagma isMagma
isSemigroup : IsSemigroup _≈_ _∙_ → IsSemigroup (liftRel _≈_) (lift₂ _∙_)
isSemigroup isSemigroup = record
{ isMagma = isMagma M.isMagma
; assoc = λ f g h _ → M.assoc (f _) (g _) (h _)
}
where module M = IsSemigroup isSemigroup
isBand : IsBand _≈_ _∙_ → IsBand (liftRel _≈_) (lift₂ _∙_)
isBand isBand = record
{ isSemigroup = isSemigroup M.isSemigroup
; idem = λ f _ → M.idem (f _)
}
where module M = IsBand isBand
isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_ →
IsCommutativeSemigroup (liftRel _≈_) (lift₂ _∙_)
isCommutativeSemigroup isCommutativeSemigroup = record
{ isSemigroup = isSemigroup M.isSemigroup
; comm = λ f g _ → M.comm (f _) (g _)
}
where module M = IsCommutativeSemigroup isCommutativeSemigroup
isMonoid : IsMonoid _≈_ _∙_ ε → IsMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε)
isMonoid isMonoid = record
{ isSemigroup = isSemigroup M.isSemigroup
; identity = (λ f _ → M.identityˡ (f _)) , λ f _ → M.identityʳ (f _)
}
where module M = IsMonoid isMonoid
isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε →
IsCommutativeMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε)
isCommutativeMonoid isCommutativeMonoid = record
{ isMonoid = isMonoid M.isMonoid
; comm = λ f g _ → M.comm (f _) (g _)
}
where module M = IsCommutativeMonoid isCommutativeMonoid
isGroup : IsGroup _≈_ _∙_ ε _⁻¹ →
IsGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹)
isGroup isGroup = record
{ isMonoid = isMonoid M.isMonoid
; inverse = (λ f _ → M.inverseˡ (f _)) , λ f _ → M.inverseʳ (f _)
; ⁻¹-cong = λ f _ → M.⁻¹-cong (f _)
}
where module M = IsGroup isGroup
isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ →
IsAbelianGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹)
isAbelianGroup isAbelianGroup = record
{ isGroup = isGroup M.isGroup
; comm = λ f g _ → M.comm (f _) (g _)
}
where module M = IsAbelianGroup isAbelianGroup
isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# →
IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid
; *-cong = λ g h _ → M.*-cong (g _) (h _)
; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _)
; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _)
}
where module M = IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero
isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# →
IsSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isSemiring isSemiring = record
{ isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero M.isSemiringWithoutAnnihilatingZero
; zero = (λ f _ → M.zeroˡ (f _)) , λ f _ → M.zeroʳ (f _)
}
where module M = IsSemiring isSemiring
isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# →
IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
isRing isRing = record
{ +-isAbelianGroup = isAbelianGroup M.+-isAbelianGroup
; *-cong = λ g h _ → M.*-cong (g _) (h _)
; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _)
; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _)
}
where module M = IsRing isRing
magma : Magma c ℓ → Magma (a ⊔ c) (a ⊔ ℓ)
magma m = record { isMagma = isMagma (Magma.isMagma m) }
semigroup : Semigroup c ℓ → Semigroup (a ⊔ c) (a ⊔ ℓ)
semigroup m = record { isSemigroup = isSemigroup (Semigroup.isSemigroup m) }
band : Band c ℓ → Band (a ⊔ c) (a ⊔ ℓ)
band m = record { isBand = isBand (Band.isBand m) }
commutativeSemigroup : CommutativeSemigroup c ℓ → CommutativeSemigroup (a ⊔ c) (a ⊔ ℓ)
commutativeSemigroup m = record { isCommutativeSemigroup = isCommutativeSemigroup (CommutativeSemigroup.isCommutativeSemigroup m) }
monoid : Monoid c ℓ → Monoid (a ⊔ c) (a ⊔ ℓ)
monoid m = record { isMonoid = isMonoid (Monoid.isMonoid m) }
group : Group c ℓ → Group (a ⊔ c) (a ⊔ ℓ)
group m = record { isGroup = isGroup (Group.isGroup m) }
abelianGroup : AbelianGroup c ℓ → AbelianGroup (a ⊔ c) (a ⊔ ℓ)
abelianGroup m = record { isAbelianGroup = isAbelianGroup (AbelianGroup.isAbelianGroup m) }
semiring : Semiring c ℓ → Semiring (a ⊔ c) (a ⊔ ℓ)
semiring m = record { isSemiring = isSemiring (Semiring.isSemiring m) }
ring : Ring c ℓ → Ring (a ⊔ c) (a ⊔ ℓ)
ring m = record { isRing = isRing (Ring.isRing m) }