{-# OPTIONS --cubical-compatible --safe #-}
open import Level using (0ℓ)
open import Relation.Binary.Bundles using (DecSetoid)
module Data.List.Countdown (D : DecSetoid 0ℓ 0ℓ) where
open import Data.Empty
open import Data.Fin.Base using (Fin; zero; suc; punchOut)
open import Data.Fin.Properties
using (suc-injective; punchOut-injective)
open import Function.Base
open import Function.Bundles
using (Injection; module Injection)
open import Data.Bool.Base using (true; false)
open import Data.List.Base hiding (lookup)
open import Data.List.Relation.Unary.Any as Any using (here; there)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Product.Base using (∃; _,_; _×_)
open import Data.Sum.Base
open import Data.Sum.Properties
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary
open import Relation.Nullary.Decidable using (dec-true; dec-false)
open import Relation.Binary.PropositionalEquality.Core as ≡
using (_≡_; _≢_; refl; cong)
import Relation.Binary.PropositionalEquality.Properties as ≡
open ≡.≡-Reasoning
private
open module D = DecSetoid D
hiding (refl) renaming (Carrier to Elem)
open import Data.List.Membership.Setoid D.setoid
private
first-occurrence : ∀ {xs} x → x ∈ xs → x ∈ xs
first-occurrence x (here x≈y) = here x≈y
first-occurrence x (there {x = y} x∈xs) with x ≟ y
... | true because [x≈y] = here (invert [x≈y])
... | false because _ = there $ first-occurrence x x∈xs
first-index : ∀ {xs} x → x ∈ xs → Fin (length xs)
first-index x x∈xs = Any.index $ first-occurrence x x∈xs
first-index-cong : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
x₁ ≈ x₂ → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs
first-index-cong {x₁} {x₂} x₁∈xs x₂∈xs x₁≈x₂ = helper x₁∈xs x₂∈xs
where
helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs
helper (here x₁≈x) (here x₂≈x) = refl
helper (here x₁≈x) (there {x = x} x₂∈xs)
with x₂ ≟ x | dec-true (x₂ ≟ x) (trans (sym x₁≈x₂) x₁≈x)
... | _ | refl = refl
helper (there {x = x} x₁∈xs) (here x₂≈x)
with x₁ ≟ x | dec-true (x₁ ≟ x) (trans x₁≈x₂ x₂≈x)
... | _ | refl = refl
helper (there {x = x} x₁∈xs) (there x₂∈xs) with x₁ ≟ x | x₂ ≟ x
... | true because _ | true because _ = refl
... | false because _ | false because _ = cong suc $ helper x₁∈xs x₂∈xs
... | yes x₁≈x | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x))
... | no x₁≉x | yes x₂≈x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x))
first-index-injective
: ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂
first-index-injective {x₁} {x₂} = helper
where
helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂
helper (here x₁≈x) (here x₂≈x) _ = trans x₁≈x (sym x₂≈x)
helper (here x₁≈x) (there {x = x} x₂∈xs) _ with x₂ ≟ x
helper (here x₁≈x) (there {x = x} x₂∈xs) _ | yes x₂≈x = trans x₁≈x (sym x₂≈x)
helper (here x₁≈x) (there {x = x} x₂∈xs) () | no x₂≉x
helper (there {x = x} x₁∈xs) (here x₂≈x) _ with x₁ ≟ x
helper (there {x = x} x₁∈xs) (here x₂≈x) _ | yes x₁≈x = trans x₁≈x (sym x₂≈x)
helper (there {x = x} x₁∈xs) (here x₂≈x) () | no x₁≉x
helper (there {x = x} x₁∈xs) (there x₂∈xs) _ with x₁ ≟ x | x₂ ≟ x
helper (there {x = x} x₁∈xs) (there x₂∈xs) _ | yes x₁≈x | yes x₂≈x = trans x₁≈x (sym x₂≈x)
helper (there {x = x} x₁∈xs) (there x₂∈xs) () | yes x₁≈x | no x₂≉x
helper (there {x = x} x₁∈xs) (there x₂∈xs) () | no x₁≉x | yes x₂≈x
helper (there {x = x} x₁∈xs) (there x₂∈xs) eq | no x₁≉x | no x₂≉x =
helper x₁∈xs x₂∈xs (suc-injective eq)
infix 4 _⊕_
record _⊕_ (counted : List Elem) (n : ℕ) : Set where
field
kind : ∀ x → x ∈ counted ⊎ Fin n
injective : ∀ {x y i} → kind x ≡ inj₂ i → kind y ≡ inj₂ i → x ≈ y
empty : ∀ {n} → Injection D.setoid (≡.setoid (Fin n)) → [] ⊕ n
empty inj =
record { kind = inj₂ ∘ to
; injective = λ {x} {y} {i} eq₁ eq₂ → injective (begin
to x ≡⟨ inj₂-injective eq₁ ⟩
i ≡⟨ ≡.sym $ inj₂-injective eq₂ ⟩
to y ∎)
}
where open Injection inj
emptyFromList : (counted : List Elem) → (∀ x → x ∈ counted) →
[] ⊕ length counted
emptyFromList counted complete = empty record
{ to = λ x → first-index x (complete x)
; cong = first-index-cong (complete _) (complete _)
; injective = first-index-injective (complete _) (complete _)
}
lookup : ∀ {counted n} → counted ⊕ n → ∀ x → Dec (x ∈ counted)
lookup {counted} _ x = Any.any? (_≟_ x) counted
lookup! : ∀ {counted} → counted ⊕ zero → ∀ x → x ∈ counted
lookup! counted⊕0 x with _⊕_.kind counted⊕0 x
... | inj₁ x∈counted = x∈counted
... | inj₂ ()
private
lookup‼ : ∀ {m counted} →
counted ⊕ m → ∀ x → x ∉ counted → ∃ λ n → m ≡ suc n
lookup‼ {suc m} counted⊕n x x∉counted = (m , refl)
lookup‼ {zero} counted⊕n x x∉counted =
⊥-elim (x∉counted $ lookup! counted⊕n x)
insert : ∀ {counted n} →
counted ⊕ suc n → ∀ x → x ∉ counted → x ∷ counted ⊕ n
insert {counted} {n} counted⊕1+n x x∉counted =
record { kind = kind′; injective = inj }
where
open _⊕_ counted⊕1+n
helper : ∀ x y i {j} →
kind x ≡ inj₂ i → kind y ≡ inj₂ j → i ≡ j → x ≈ y
helper _ _ _ eq₁ eq₂ refl = injective eq₁ eq₂
kind′ : ∀ y → y ∈ x ∷ counted ⊎ Fin n
kind′ y with y ≟ x | kind x | kind y | helper x y
kind′ y | yes y≈x | _ | _ | _ = inj₁ (here y≈x)
kind′ y | _ | inj₁ x∈counted | _ | _ = ⊥-elim (x∉counted x∈counted)
kind′ y | _ | _ | inj₁ y∈counted | _ = inj₁ (there y∈counted)
kind′ y | no y≉x | inj₂ i | inj₂ j | hlp =
inj₂ (punchOut (y≉x ∘ sym ∘ hlp _ refl refl))
inj : ∀ {y z i} → kind′ y ≡ inj₂ i → kind′ z ≡ inj₂ i → y ≈ z
inj {y} {z} eq₁ eq₂ with y ≟ x | z ≟ x | kind x | kind y | kind z
| helper x y | helper x z | helper y z
inj () _ | yes _ | _ | _ | _ | _ | _ | _ | _
inj _ () | _ | yes _ | _ | _ | _ | _ | _ | _
inj _ _ | no _ | no _ | inj₁ x∈counted | _ | _ | _ | _ | _ = ⊥-elim (x∉counted x∈counted)
inj () _ | no _ | no _ | inj₂ _ | inj₁ _ | _ | _ | _ | _
inj _ () | no _ | no _ | inj₂ _ | _ | inj₁ _ | _ | _ | _
inj eq₁ eq₂ | no _ | no _ | inj₂ i | inj₂ _ | inj₂ _ | _ | _ | hlp =
hlp _ refl refl $
punchOut-injective {i = i} _ _ $
(≡.trans (inj₂-injective eq₁) (≡.sym (inj₂-injective eq₂)))
lookupOrInsert : ∀ {counted m} →
counted ⊕ m →
∀ x → x ∈ counted ⊎
∃ λ n → m ≡ suc n × x ∷ counted ⊕ n
lookupOrInsert counted⊕n x with lookup counted⊕n x
... | yes x∈counted = inj₁ x∈counted
... | no x∉counted with lookup‼ counted⊕n x x∉counted
... | (n , refl) = inj₂ (n , refl , insert counted⊕n x x∉counted)