{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties where
open import Function.Base using (id; _∘_; _$_)
open import Relation.Binary.Core using (Rel; _=[_]⇒_; _⇒_)
open import Relation.Binary.Bundles using (Preorder)
open import Relation.Binary.Structures using (IsPreorder)
open import Relation.Binary.Definitions using (Transitive; Reflexive)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.PropositionalEquality.Core as ≡
using (_≡_; refl; sym; cong; cong₂)
import Relation.Binary.PropositionalEquality.Properties as ≡
import Relation.Binary.Reasoning.Preorder as ≲-Reasoning
open import Relation.Binary.Reasoning.Syntax
module _ {i t} {I : Set i} {T : Rel I t} where
◅◅-assoc : ∀ {i j k l}
(xs : Star T i j) (ys : Star T j k) (zs : Star T k l) →
(xs ◅◅ ys) ◅◅ zs ≡ xs ◅◅ (ys ◅◅ zs)
◅◅-assoc ε ys zs = refl
◅◅-assoc (x ◅ xs) ys zs = cong (_◅_ x) (◅◅-assoc xs ys zs)
gmap-id : ∀ {i t} {I : Set i} {T : Rel I t} {i j} (xs : Star T i j) →
gmap id id xs ≡ xs
gmap-id ε = refl
gmap-id (x ◅ xs) = cong (_◅_ x) (gmap-id xs)
gmap-∘ : ∀ {i t} {I : Set i} {T : Rel I t}
{j u} {J : Set j} {U : Rel J u}
{k v} {K : Set k} {V : Rel K v}
(f : J → K) (g : U =[ f ]⇒ V)
(f′ : I → J) (g′ : T =[ f′ ]⇒ U)
{i j} (xs : Star T i j) →
(gmap {U = V} f g ∘ gmap f′ g′) xs ≡ gmap (f ∘ f′) (g ∘ g′) xs
gmap-∘ f g f′ g′ ε = refl
gmap-∘ f g f′ g′ (x ◅ xs) = cong (_◅_ (g (g′ x))) (gmap-∘ f g f′ g′ xs)
gmap-◅◅ : ∀ {i t j u}
{I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u}
(f : I → J) (g : T =[ f ]⇒ U)
{i j k} (xs : Star T i j) (ys : Star T j k) →
gmap {U = U} f g (xs ◅◅ ys) ≡ gmap f g xs ◅◅ gmap f g ys
gmap-◅◅ f g ε ys = refl
gmap-◅◅ f g (x ◅ xs) ys = cong (_◅_ (g x)) (gmap-◅◅ f g xs ys)
gmap-cong : ∀ {i t j u}
{I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u}
(f : I → J) (g : T =[ f ]⇒ U) (g′ : T =[ f ]⇒ U) →
(∀ {i j} (x : T i j) → g x ≡ g′ x) →
∀ {i j} (xs : Star T i j) →
gmap {U = U} f g xs ≡ gmap f g′ xs
gmap-cong f g g′ eq ε = refl
gmap-cong f g g′ eq (x ◅ xs) = cong₂ _◅_ (eq x) (gmap-cong f g g′ eq xs)
fold-◅◅ : ∀ {i p} {I : Set i}
(P : Rel I p) (_⊕_ : Transitive P) (∅ : Reflexive P) →
(∀ {i j} (x : P i j) → (∅ ⊕ x) ≡ x) →
(∀ {i j k l} (x : P i j) (y : P j k) (z : P k l) →
((x ⊕ y) ⊕ z) ≡ (x ⊕ (y ⊕ z))) →
∀ {i j k} (xs : Star P i j) (ys : Star P j k) →
fold P _⊕_ ∅ (xs ◅◅ ys) ≡ (fold P _⊕_ ∅ xs ⊕ fold P _⊕_ ∅ ys)
fold-◅◅ P _⊕_ ∅ left-unit assoc ε ys = sym (left-unit _)
fold-◅◅ P _⊕_ ∅ left-unit assoc (x ◅ xs) ys = begin
(x ⊕ fold P _⊕_ ∅ (xs ◅◅ ys)) ≡⟨ cong (_⊕_ x) $
fold-◅◅ P _⊕_ ∅ left-unit assoc xs ys ⟩
(x ⊕ (fold P _⊕_ ∅ xs ⊕ fold P _⊕_ ∅ ys)) ≡⟨ sym (assoc x _ _) ⟩
((x ⊕ fold P _⊕_ ∅ xs) ⊕ fold P _⊕_ ∅ ys) ∎
where open ≡.≡-Reasoning
module _ {i t} {I : Set i} (T : Rel I t) where
reflexive : _≡_ ⇒ Star T
reflexive refl = ε
trans : Transitive (Star T)
trans = _◅◅_
isPreorder : IsPreorder _≡_ (Star T)
isPreorder = record
{ isEquivalence = ≡.isEquivalence
; reflexive = reflexive
; trans = trans
}
preorder : Preorder _ _ _
preorder = record
{ _≈_ = _≡_
; _≲_ = Star T
; isPreorder = isPreorder
}
module StarReasoning {i t} {I : Set i} (T : Rel I t) where
private module Base = ≲-Reasoning (preorder T)
open Base public
hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨; step-∼; step-≲)
renaming (≲-go to ⟶-go)
open ⟶-syntax _IsRelatedTo_ _IsRelatedTo_ (⟶-go ∘ (_◅ ε)) public
open ⟶*-syntax _IsRelatedTo_ _IsRelatedTo_ ⟶-go public