------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of First
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Relation.Unary.First.Properties where

open import Data.Fin.Base using (suc)
open import Data.List.Base as List using (List; []; _∷_)
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as Any using (here; there)
open import Data.List.Relation.Unary.First
import Data.Sum.Base as Sum
open import Function.Base using (_∘′_; _∘_; id)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_; refl; _≗_)
import Relation.Nullary.Decidable.Core as Dec
open import Relation.Nullary.Negation.Core using (contradiction)
open import Relation.Unary using (Pred; _⊆_; ; Irrelevant; Decidable)

------------------------------------------------------------------------
-- map

module _ {a b p q} {A : Set a} {B : Set b} {P : Pred B p} {Q : Pred B q} where

  map⁺ : {f : A  B}  First (P ∘′ f) (Q ∘′ f)  First P Q ∘′ List.map f
  map⁺ [ qfx ]        = [ qfx ]
  map⁺ (pfxs  pqfxs) = pfxs  map⁺ pqfxs

  map⁻ : {f : A  B}  First P Q ∘′ List.map f  First (P ∘′ f) (Q ∘′ f)
  map⁻ {f} {x  xs} [ qfx ]       = [ qfx ]
  map⁻ {f} {x  xs} (pfx  pqfxs) = pfx  map⁻ pqfxs

------------------------------------------------------------------------
-- (++)

module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where

  ++⁺ :  {xs ys}  All P xs  First P Q ys  First P Q (xs List.++ ys)
  ++⁺ []         pqys = pqys
  ++⁺ (px  pxs) pqys = px  ++⁺ pxs pqys

  ⁺++ :  {xs}  First P Q xs   ys  First P Q (xs List.++ ys)
  ⁺++ [ qx ]      ys = [ qx ]
  ⁺++ (px  pqxs) ys = px  ⁺++ pqxs ys

------------------------------------------------------------------------
-- Relationship to All

module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where

  All⇒¬First : P   Q  All P   (First P Q)
  All⇒¬First p⇒¬q (px  pxs) [ qx ]   = contradiction qx (p⇒¬q px)
  All⇒¬First p⇒¬q (_  pxs)  (_  hf) = All⇒¬First p⇒¬q pxs hf

  First⇒¬All : Q   P  First P Q   (All P)
  First⇒¬All q⇒¬p [ qx ]     (px  pxs) = q⇒¬p qx px
  First⇒¬All q⇒¬p (_  pqxs) (_  pxs)  = First⇒¬All q⇒¬p pqxs pxs

------------------------------------------------------------------------
-- Irrelevance

  unique-index :  {xs}  P   Q  (f₁ f₂ : First P Q xs)  index f₁  index f₂
  unique-index p⇒¬q [ _ ]    [ _ ]    = refl
  unique-index p⇒¬q [ qx ]   (px  _) = contradiction qx (p⇒¬q px)
  unique-index p⇒¬q (px  _) [ qx ]   = contradiction qx (p⇒¬q px)
  unique-index p⇒¬q (_  f₁) (_  f₂) = ≡.cong suc (unique-index p⇒¬q f₁ f₂)

  irrelevant : P   Q  Irrelevant P  Irrelevant Q  Irrelevant (First P Q)
  irrelevant p⇒¬q p-irr q-irr [ px ]    [ qx ]    = ≡.cong [_] (q-irr px qx)
  irrelevant p⇒¬q p-irr q-irr [ qx ]    (px  _)  = contradiction qx (p⇒¬q px)
  irrelevant p⇒¬q p-irr q-irr (px  _)  [ qx ]    = contradiction qx (p⇒¬q px)
  irrelevant p⇒¬q p-irr q-irr (px  f)  (qx  g) =
    ≡.cong₂ _∷_ (p-irr px qx) (irrelevant p⇒¬q p-irr q-irr f g)

------------------------------------------------------------------------
-- Decidability

module _ {a p} {A : Set a} {P : Pred A p} where

  first? : Decidable P  Decidable (First P ( P))
  first? P? = Dec.fromSum
             Sum.map₂ (All⇒¬First contradiction)
             first (Dec.toSum  P?)

  cofirst? : Decidable P  Decidable (First ( P) P)
  cofirst? P? = Dec.fromSum
               Sum.map₂ (All⇒¬First id)
               first (Sum.swap  Dec.toSum  P?)

------------------------------------------------------------------------
-- Conversion to Any

module _ {a p} {A : Set a} {P : Pred A p} where

  fromAny∘toAny≗id :  {xs}  fromAny {Q = P} {x = xs} ∘′ toAny  id
  fromAny∘toAny≗id [ qx ]      = refl
  fromAny∘toAny≗id (px  pqxs) = ≡.cong (_ ∷_) (fromAny∘toAny≗id pqxs)

  toAny∘fromAny≗id :  {xs}  toAny {Q = P} ∘′ fromAny {x = xs}  id
  toAny∘fromAny≗id (here px) = refl
  toAny∘fromAny≗id (there v) = ≡.cong there (toAny∘fromAny≗id v)

------------------------------------------------------------------------
-- Equivalence between the inductive definition and the view

module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where

  toView :  {as}  First P Q as  FirstView P Q as
  toView [ qx ] = [] ++ qx  _
  toView (px  pqxs) with toView pqxs
  ... | pxs ++  qy  ys = (px  pxs) ++ qy  ys

  fromView :  {as}  FirstView P Q as  First P Q as
  fromView (pxs ++ qy  ys) = ++⁺ pxs [ qy ]