------------------------------------------------------------------------
-- The Agda standard library
--
-- Directed acyclic multigraphs
------------------------------------------------------------------------

-- A representation of DAGs, based on the idea underlying Martin
-- Erwig's FGL. Note that this representation does not aim to be
-- efficient.

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Graph.Acyclic where

open import Level using (_⊔_)
open import Data.Nat.Base as  using (; zero; suc; _<′_)
open import Data.Nat.Induction using (<′-rec; <′-Rec)
import Data.Nat.Properties as 
open import Data.Fin as Fin
  using (Fin; Fin′; zero; suc; #_; toℕ; _≟_; opposite) renaming (_ℕ-ℕ_ to _-_)
import Data.Fin.Properties as Fin
open import Data.Product.Base as Prod using (; _×_; _,_)
open import Data.Maybe.Base as Maybe using (Maybe)
open import Data.Empty using ()
open import Data.Unit.Base using (; tt)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Data.List.Base as List using (List; []; _∷_)
open import Function.Base using (_$_; _∘′_; _∘_; id)
open import Relation.Binary.Consequences using (dec⇒weaklyDec)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)

------------------------------------------------------------------------
-- A lemma

private

  lemma :  n (i : Fin n)  n - suc i <′ n
  lemma (suc n) i  = ℕ.≤⇒≤′ $ ℕ.s≤s $ Fin.nℕ-ℕi≤n n i

------------------------------------------------------------------------
-- Node contexts

record Context { e} (Node : Set ) (Edge : Set e) (n : ) : Set (  e) where
  constructor context
  field
    label      : Node
    successors : List (Edge × Fin n)

open Context public

-- Map for contexts.

module _ {ℓ₁ e₁} {N₁ : Set ℓ₁} {E₁ : Set e₁}
         {ℓ₂ e₂} {N₂ : Set ℓ₂} {E₂ : Set e₂} where

  cmap :  {n}  (N₁  N₂)  (List (E₁ × Fin n)  List (E₂ × Fin n)) 
         Context N₁ E₁ n  Context N₂ E₂ n
  cmap f g c = context (f (label c)) (g (successors c))

------------------------------------------------------------------------
-- Graphs

infixr 3 _&_

-- The DAGs are indexed on the number of nodes.

data Graph { e} (Node : Set ) (Edge : Set e) :   Set (  e) where
     : Graph Node Edge 0
  _&_ :  {n} (c : Context Node Edge n) (g : Graph Node Edge n) 
        Graph Node Edge (suc n)

private

  example : Graph   5
  example = context 0 [] &
            context 1 ((10 , # 1)  (11 , # 1)  []) &
            context 2 ((12 , # 0)  []) &
            context 3 [] &
            context 4 [] &
            

------------------------------------------------------------------------
-- Higher-order functions

module _ { e} {N : Set } {E : Set e} {t} where

-- "Fold right".

  foldr : (T :   Set t) 
          (∀ {n}  Context N E n  T n  T (suc n)) 
          T 0 
           {m}  Graph N E m  T m
  foldr T _∙_ x        = x
  foldr T _∙_ x (c & g) = c  foldr T _∙_ x g

-- "Fold left".

  foldl :  {n} (T :   Set t) 
          ((i : Fin n)  T (toℕ i)  Context N E (n - suc i) 
          T (suc (toℕ i))) 
          T 0 
          Graph N E n  T n
  foldl T f x        = x
  foldl T f x (c & g) = foldl (T ∘′ suc) (f  suc) (f zero x c) g


module _ {ℓ₁ e₁} {N₁ : Set ℓ₁} {E₁ : Set e₁}
         {ℓ₂ e₂} {N₂ : Set ℓ₂} {E₂ : Set e₂} where

-- Maps over node contexts.

  map : (∀ {n}  Context N₁ E₁ n  Context N₂ E₂ n) 
         {n}  Graph N₁ E₁ n  Graph N₂ E₂ n
  map f = foldr _  c  f c &_) 

-- Maps over node labels.

nmap :  {ℓ₁ ℓ₂ e} {N₁ : Set ℓ₁} {N₂ : Set ℓ₂} {E : Set e} 
        {n}  (N₁  N₂)  Graph N₁ E n  Graph N₂ E n
nmap f = map (cmap f id)

-- Maps over edge labels.

emap :  { e₁ e₂} {N : Set } {E₁ : Set e₁} {E₂ : Set e₂} 
        {n}  (E₁  E₂)  Graph N E₁ n  Graph N E₂ n
emap f = map (cmap id (List.map (Prod.map f id)))

-- Zips two graphs with the same number of nodes. Note that one of the
-- graphs has a type which restricts it to be completely disconnected.

zipWith :  {ℓ₁ ℓ₂  e} {N₁ : Set ℓ₁} {N₂ : Set ℓ₂} {N : Set } {E : Set e} 
           {n}  (N₁  N₂  N)  Graph N₁  n  Graph N₂ E n  Graph N E n
zipWith _∙_                   = 
zipWith _∙_ (c₁ & g₁) (c₂ & g₂) =
  context (label c₁  label c₂) (successors c₂) & zipWith _∙_ g₁ g₂

------------------------------------------------------------------------
-- Specific graphs

-- A completeley disconnected graph.

disconnected :  n  Graph   n
disconnected zero    = 
disconnected (suc n) = context tt [] & disconnected n

-- A complete graph.

complete :  n  Graph   n
complete zero    = 
complete (suc n) =
  context tt (List.map (tt ,_) $ Vec.toList (Vec.allFin n)) &
  complete n

------------------------------------------------------------------------
-- Queries

module _ { e} {N : Set } {E : Set e} where

-- The top-most context.

  head :  {n}  Graph N E (suc n)  Context N E n
  head (c & g) = c

-- The remaining graph.

  tail :  {n}  Graph N E (suc n)  Graph N E n
  tail (c & g) = g

-- Finds the context and remaining graph corresponding to a given node
-- index.

  infix 4 _[_]

  _[_] :  {n}  Graph N E n  (i : Fin n)  Graph N E (suc (n - suc i))
  (c & g) [ zero ]  = c & g
  (c & g) [ suc i ] = g [ i ]

-- The nodes of the graph (node number relative to "topmost" node ×
-- node label).

  nodes :  {n}  Graph N E n  Vec (Fin n × N) n
  nodes = Vec.zip (Vec.allFin _) 
          foldr (Vec N)  c  label c ∷_) []

private

  test-nodes : nodes example  (# 0 , 0)  (# 1 , 1)  (# 2 , 2) 
                               (# 3 , 3)  (# 4 , 4)  []
  test-nodes = refl


module _ { e} {N : Set } {E : Set e} where

-- Topological sort. Gives a vector where earlier nodes are never
-- successors of later nodes.

  topSort :  {n}  Graph N E n  Vec (Fin n × N) n
  topSort = nodes

-- The edges of the graph (predecessor × edge label × successor).
--
-- The predecessor is a node number relative to the "topmost" node in
-- the graph, and the successor is a node number relative to the
-- predecessor.

  edges :  {n}  Graph N E n  List ( λ i  E × Fin (n - suc i))
  edges {n} =
    foldl  _  List ( λ i  E × Fin (n - suc i)))
           i es c  es List.++ List.map (i ,_) (successors c))
          []

private

  test-edges : edges example  (# 1 , 10 , # 1)  (# 1 , 11 , # 1) 
                               (# 2 , 12 , # 0)  []
  test-edges = refl

-- The successors of a given node i (edge label × node number relative
-- to i).

sucs :  { e} {N : Set } {E : Set e} 
        {n}  Graph N E n  (i : Fin n)  List (E × Fin (n - suc i))
sucs g i = successors $ head (g [ i ])

private

  test-sucs : sucs example (# 1)  (10 , # 1)  (11 , # 1)  []
  test-sucs = refl

-- The predecessors of a given node i (node number relative to i ×
-- edge label).

preds :  { e} {N : Set } {E : Set e} 
         {n}  Graph N E n  (i : Fin n)  List (Fin′ i × E)
preds g       zero    = []
preds (c & g) (suc i) =
  List._++_ (List.mapMaybe (p i) $ successors c)
            (List.map (Prod.map suc id) $ preds g i)
  where
  p :  {e} {E : Set e} {n} (i : Fin n)  E × Fin n  Maybe (Fin′ (suc i) × E)
  p i (e , j) = Maybe.map (λ{ refl  zero , e }) (dec⇒weaklyDec _≟_ i j)

private

  test-preds : preds example (# 3) 
               (# 1 , 10)  (# 1 , 11)  (# 2 , 12)  []
  test-preds = refl

------------------------------------------------------------------------
-- Operations

-- Weakens a node label.

weaken :  {n} {i : Fin n}  Fin (n - suc i)  Fin n
weaken {n} {i} j = Fin.inject≤ j (Fin.nℕ-ℕi≤n n (suc i))

-- Labels each node with its node number.

number :  { e} {N : Set } {E : Set e} 
          {n}  Graph N E n  Graph (Fin n × N) E n
number {N = N} {E} =
  foldr  n  Graph (Fin n × N) E n)
         c g  cmap (zero ,_) id c & nmap (Prod.map suc id) g)
        

private

  test-number : number example 
                (context (# 0 , 0) [] &
                 context (# 1 , 1) ((10 , # 1)  (11 , # 1)  []) &
                 context (# 2 , 2) ((12 , # 0)  []) &
                 context (# 3 , 3) [] &
                 context (# 4 , 4) [] &
                 )
  test-number = refl

-- Reverses all the edges in the graph.

reverse :  { e} {N : Set } {E : Set e} 
           {n}  Graph N E n  Graph N E n
reverse {N = N} {E} g =
  foldl (Graph N E)
         i g′ c 
           context (label c)
                   (List.map (Prod.swap  Prod.map opposite id) $
                             preds g i)
           & g′)
         g

private

  test-reverse : reverse (reverse example)  example
  test-reverse = refl

------------------------------------------------------------------------
-- Views

-- Expands the subgraph induced by a given node into a tree (thus
-- losing all sharing).

data Tree { e} (N : Set ) (E : Set e) : Set (  e) where
  node : (label : N) (successors : List (E × Tree N E))  Tree N E

module _ { e} {N : Set } {E : Set e} where

  toTree :  {n}  Graph N E n  Fin n  Tree N E
  toTree g i = <′-rec Pred expand _ (g [ i ])
    where
    Pred = λ n  Graph N E (suc n)  Tree N E

    expand : (n : )  <′-Rec Pred n  Pred n
    expand n rec (c & g) =
      node (label c)
           (List.map
              (Prod.map id  i  rec (lemma n i) (g [ i ])))
              (successors c))

-- Performs the toTree expansion once for each node.

  toForest :  {n}  Graph N E n  Vec (Tree N E) n
  toForest g = Vec.map (toTree g) (Vec.allFin _)

private

  test-toForest : toForest example 
                    let n3 = node 3 [] in
                    node 0 [] 
                    node 1 ((10 , n3)  (11 , n3)  []) 
                    node 2 ((12 , n3)  []) 
                    node 3 [] 
                    node 4 [] 
                    []
  test-toForest = refl