{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Bundles using (Monoid)
module Algebra.Properties.Monoid.Mult {a ℓ} (M : Monoid a ℓ) where
open import Data.Bool.Base as Bool using (true; false; _∧_)
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; NonZero)
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_)
open Monoid M
renaming
( _∙_ to _+_
; ∙-cong to +-cong
; ∙-congʳ to +-congʳ
; ∙-congˡ to +-congˡ
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; assoc to +-assoc
; ε to 0#
)
open import Algebra.Definitions _≈_
open import Algebra.Properties.Semigroup semigroup
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Definitions.RawMonoid rawMonoid public
using (_×_; _?>₀_; _?>_∙_)
×-congʳ : ∀ n → (n ×_) Preserves _≈_ ⟶ _≈_
×-congʳ 0 x≈x′ = refl
×-congʳ (suc n) x≈x′ = +-cong x≈x′ (×-congʳ n x≈x′)
×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
×-cong {n} ≡.refl x≈x′ = ×-congʳ n x≈x′
×-congˡ : ∀ {x} → (_× x) Preserves _≡_ ⟶ _≈_
×-congˡ m≡n = ×-cong m≡n refl
×-homo-0 : ∀ x → 0 × x ≈ 0#
×-homo-0 x = refl
×-homo-1 : ∀ x → 1 × x ≈ x
×-homo-1 = +-identityʳ
×-homo-+ : ∀ x m n → (m ℕ.+ n) × x ≈ m × x + n × x
×-homo-+ x 0 n = sym (+-identityˡ (n × x))
×-homo-+ x (suc m) n = sym (uv≈w⇒xu∙v≈xw (sym (×-homo-+ x m n)) x)
×-idem : ∀ {c} → _+_ IdempotentOn c →
∀ n → .{{_ : NonZero n}} → n × c ≈ c
×-idem {c} idem (suc zero) = +-identityʳ c
×-idem {c} idem (suc n@(suc _)) = begin
c + (n × c) ≈⟨ +-congˡ (×-idem idem n ) ⟩
c + c ≈⟨ idem ⟩
c ∎
×-assocˡ : ∀ x m n → m × (n × x) ≈ (m ℕ.* n) × x
×-assocˡ x zero n = refl
×-assocˡ x (suc m) n = begin
n × x + m × n × x ≈⟨ +-congˡ (×-assocˡ x m n) ⟩
n × x + (m ℕ.* n) × x ≈⟨ ×-homo-+ x n (m ℕ.* n) ⟨
(suc m ℕ.* n) × x ∎
?>₀-homo-true : ∀ x → true ?>₀ x ≈ x
?>₀-homo-true _ = refl
?>₀-assocˡ : ∀ b b′ x → b ?>₀ b′ ?>₀ x ≈ (b ∧ b′) ?>₀ x
?>₀-assocˡ false _ _ = refl
?>₀-assocˡ true _ _ = refl
b?>x∙y≈b?>₀x+y : ∀ b x y → b ?> x ∙ y ≈ b ?>₀ x + y
b?>x∙y≈b?>₀x+y true _ _ = refl
b?>x∙y≈b?>₀x+y false _ y = sym (+-identityˡ y)
b?>₀x≈b?>x∙0 : ∀ b x → b ?>₀ x ≈ b ?> x ∙ 0#
b?>₀x≈b?>x∙0 true _ = sym (+-identityʳ _)
b?>₀x≈b?>x∙0 false x = refl