------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of relations over Vector
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Data.Nat.Base using ()
open import Data.Vec.Functional hiding (map)
open import Data.Vec.Functional.Relation.Binary.Pointwise
  using (Pointwise)
import Data.Vec.Functional.Relation.Binary.Pointwise.Properties as PW
open import Level using (Level)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions
  using (Reflexive; Symmetric; Transitive)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_)

module Data.Vec.Functional.Relation.Binary.Equality.Setoid
  {a } (S : Setoid a ) where

open Setoid S renaming (Carrier to A)

------------------------------------------------------------------------
-- Definition
------------------------------------------------------------------------

infix 4 _≋_

_≋_ :  {n}  Vector A n  Vector A n  Set 
_≋_ = Pointwise _≈_

------------------------------------------------------------------------
-- Relational properties
------------------------------------------------------------------------

≋-refl :  {n}  Reflexive (_≋_ {n = n})
≋-refl {n} = PW.refl {R = _≈_} refl

≋-reflexive :  {n}  _≡_  (_≋_ {n = n})
≋-reflexive ≡.refl = ≋-refl

≋-sym :  {n}  Symmetric (_≋_ {n = n})
≋-sym = PW.sym {R = _≈_} sym

≋-trans :  {n}  Transitive (_≋_ {n = n})
≋-trans = PW.trans {R = _≈_} trans

≋-isEquivalence :  n  IsEquivalence (_≋_ {n = n})
≋-isEquivalence = PW.isEquivalence isEquivalence

≋-setoid :   Setoid _ _
≋-setoid = PW.setoid S

------------------------------------------------------------------------
-- Properties
------------------------------------------------------------------------

open PW public
  using
  ( map⁺
  ; head⁺; tail⁺
  ; ++⁺; ++⁻ˡ; ++⁻ʳ; ++⁻
  ; replicate⁺
  ; ⊛⁺
  ; zipWith⁺; zip⁺; zip⁻
  )

foldr-cong :  {f g}  (∀ {w x y z}  w  x  y  z  f w y  g x z) 
              {d e : A}  d  e 
              {n} {xs ys : Vector A n}  xs  ys 
             foldr f d xs  foldr g e ys
foldr-cong = PW.foldr-cong