{-# OPTIONS --cubical-compatible --safe --guardedness #-}
module Effect.Monad.Partiality.All where
open import Effect.Monad
open import Effect.Monad.Partiality as Partiality using (_⊥; ⇒≈)
open import Codata.Musical.Notation
open import Function.Base using (flip; _∘_)
open import Level
open import Relation.Binary.Definitions using (_Respects_)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_)
open Partiality._⊥
open Partiality.Equality using (Rel)
open Partiality.Equality.Rel
private
open module E {a} {A : Set a} = Partiality.Equality (_≡_ {A = A})
using (_≅_; _≳_)
open module M {f} = RawMonad (Partiality.monad {f = f})
using (_>>=_)
private
variable
a b p ℓ : Level
A : Set a
B : Set b
data All {A : Set a} (P : A → Set p) : A ⊥ → Set (a ⊔ p) where
now : ∀ {v} (p : P v) → All P (now v)
later : ∀ {x} (p : ∞ (All P (♭ x))) → All P (later x)
infixl 1 _>>=-cong_
_>>=-cong_ : ∀ {p q} {P : A → Set p} {Q : B → Set q}
{x : A ⊥} {f : A → B ⊥} →
All P x → (∀ {x} → P x → All Q (f x)) →
All Q (x >>= f)
now p >>=-cong f = f p
later p >>=-cong f = later (♯ (♭ p >>=-cong f))
respects :
∀ {k} {P : A → Set p} {_∼_ : A → A → Set ℓ} →
P Respects _∼_ → All P Respects Rel _∼_ k
respects resp (now x∼y) (now p) = now (resp x∼y p)
respects resp (later x∼y) (later p) = later (♯ respects resp (♭ x∼y) (♭ p))
respects resp (laterˡ x∼y) (later p) = respects resp x∼y (♭ p)
respects resp (laterʳ x≈y) p = later (♯ respects resp x≈y p)
respects-flip :
∀ {k} {P : A → Set p} {_∼_ : A → A → Set ℓ} →
P Respects flip _∼_ → All P Respects flip (Rel _∼_ k)
respects-flip resp (now x∼y) (now p) = now (resp x∼y p)
respects-flip resp (later x∼y) (later p) = later (♯ respects-flip resp (♭ x∼y) (♭ p))
respects-flip resp (laterˡ x∼y) p = later (♯ respects-flip resp x∼y p)
respects-flip resp (laterʳ x≈y) (later p) = respects-flip resp x≈y (♭ p)
module Reasoning {P : A → Set p}
{_∼_ : A → A → Set ℓ}
(resp : P Respects flip _∼_) where
infix 3 finally
infixr 2 _≡⟨_⟩_ _∼⟨_⟩_
_≡⟨_⟩_ : ∀ x {y} → x ≡ y → All P y → All P x
_ ≡⟨ ≡.refl ⟩ p = p
_∼⟨_⟩_ : ∀ {k} x {y} → Rel _∼_ k x y → All P y → All P x
_ ∼⟨ x∼y ⟩ p = respects-flip resp (⇒≈ x∼y) p
finally : (x : A ⊥) → All P x → All P x
finally _ p = p
syntax finally x p = x ⟨ p ⟩
module Reasoning-≡ {a p} {A : Set a} {P : A → Set p}
= Reasoning {P = P} {_∼_ = _≡_} (≡.subst P ∘ ≡.sym)
module Alternative {a p : Level} where
infix 3 _⟨_⟩P
infixr 2 _≅⟨_⟩P_ _≳⟨_⟩P_
data AllP {A : Set a} (P : A → Set p) : A ⊥ → Set (suc (a ⊔ p)) where
now : ∀ {x} (p : P x) → AllP P (now x)
later : ∀ {x} (p : ∞ (AllP P (♭ x))) → AllP P (later x)
_>>=-congP_ : ∀ {B : Set a} {Q : B → Set p} {x f}
(p-x : AllP Q x) (p-f : ∀ {v} → Q v → AllP P (f v)) →
AllP P (x >>= f)
_≅⟨_⟩P_ : ∀ x {y} (x≅y : x ≅ y) (p : AllP P y) → AllP P x
_≳⟨_⟩P_ : ∀ x {y} (x≳y : x ≳ y) (p : AllP P y) → AllP P x
_⟨_⟩P : ∀ x (p : AllP P x) → AllP P x
infixl 1 _>>=-congP_
private
data AllW {A} (P : A → Set p) : A ⊥ → Set (suc (a ⊔ p)) where
now : ∀ {x} (p : P x) → AllW P (now x)
later : ∀ {x} (p : AllP P (♭ x)) → AllW P (later x)
program : ∀ {P : A → Set p} {x} → AllW P x → AllP P x
program (now p) = now p
program (later p) = later (♯ p)
trans-≅ : {P : A → Set p} {x y : A ⊥} →
x ≅ y → AllW P y → AllW P x
trans-≅ (now ≡.refl) (now p) = now p
trans-≅ (later x≅y) (later p) = later (_ ≅⟨ ♭ x≅y ⟩P p)
trans-≳ : {P : A → Set p} {x y : A ⊥} →
x ≳ y → AllW P y → AllW P x
trans-≳ (now ≡.refl) (now p) = now p
trans-≳ (later x≳y) (later p) = later (_ ≳⟨ ♭ x≳y ⟩P p)
trans-≳ (laterˡ x≳y) p = later (_ ≳⟨ x≳y ⟩P program p)
mutual
_>>=-congW_ : ∀ {P : A → Set p} {Q : B → Set p} {x f} →
AllW P x → (∀ {v} → P v → AllP Q (f v)) →
AllW Q (x >>= f)
now p >>=-congW p-f = whnf (p-f p)
later p >>=-congW p-f = later (p >>=-congP p-f)
whnf : ∀ {P : A → Set p} {x} → AllP P x → AllW P x
whnf (now p) = now p
whnf (later p) = later (♭ p)
whnf (p-x >>=-congP p-f) = whnf p-x >>=-congW p-f
whnf (_ ≅⟨ x≅y ⟩P p) = trans-≅ x≅y (whnf p)
whnf (_ ≳⟨ x≳y ⟩P p) = trans-≳ x≳y (whnf p)
whnf (_ ⟨ p ⟩P) = whnf p
sound : ∀ {P : A → Set p} {x} → AllP P x → All P x
sound = λ p → soundW (whnf p)
where
soundW : ∀ {A} {P : A → Set p} {x} → AllW P x → All P x
soundW (now p) = now p
soundW (later p) = later (♯ sound p)
complete : ∀ {P : A → Set p} {x} → All P x → AllP P x
complete (now p) = now p
complete (later p) = later (♯ complete (♭ p))