------------------------------------------------------------------------ -- The Agda standard library -- -- Some code related to propositional equality that relies on the K -- rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Relation.Binary.PropositionalEquality.WithK where open import Axiom.UniquenessOfIdentityProofs.WithK open import Relation.Binary.Definitions using (Irrelevant) open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Re-exporting safe erasure function -- ≡-erase ignores its `x ≡ y` argument and reduces to refl whenever -- x and y are judgmentally equal. This is useful when the computation -- producing the proof `x ≡ y` is expensive. open import Agda.Builtin.Equality.Erase using () renaming ( primEraseEquality to ≡-erase ) public ------------------------------------------------------------------------ -- Proof irrelevance ≡-irrelevant : ∀ {a} {A : Set a} → Irrelevant {A = A} _≡_ ≡-irrelevant = uip