------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of Heyting Commutative Rings
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Apartness.Bundles using (HeytingCommutativeRing)

module Algebra.Apartness.Properties.HeytingCommutativeRing
  {c ℓ₁ ℓ₂} (HCR : HeytingCommutativeRing c ℓ₁ ℓ₂) where

open import Function.Base using (_∘_)
open import Data.Product.Base using (_,_; proj₁; proj₂)
open import Algebra using (CommutativeRing; RightIdentity; Invertible; LeftInvertible; RightInvertible)

open HeytingCommutativeRing HCR
open CommutativeRing commutativeRing using (ring; *-commutativeMonoid)

open import Algebra.Properties.Ring ring
  using (-0#≈0#; -‿distribˡ-*; -‿distribʳ-*; -‿anti-homo-+; -‿involutive)
open import Relation.Binary.Definitions using (Symmetric)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
open import Algebra.Properties.CommutativeMonoid *-commutativeMonoid

private variable
  x y z : Carrier

invertibleˡ⇒# : LeftInvertible _≈_ 1# _*_ (x - y)  x # y
invertibleˡ⇒# = invertible⇒#  invertibleˡ⇒invertible

invertibleʳ⇒# : RightInvertible _≈_ 1# _*_ (x - y)  x # y
invertibleʳ⇒# = invertible⇒#  invertibleʳ⇒invertible

x-0≈x : RightIdentity _≈_ 0# _-_
x-0≈x x = trans (+-congˡ -0#≈0#) (+-identityʳ x)

1#0 : 1# # 0#
1#0 = invertibleˡ⇒# (1# , 1*[x-0]≈x)
  where
  1*[x-0]≈x : 1# * (x - 0#)  x
  1*[x-0]≈x {x} = trans (*-identityˡ (x - 0#)) (x-0≈x x)

x#0y#0→xy#0 : x # 0#  y # 0#  x * y # 0#
x#0y#0→xy#0 {x} {y} x#0 y#0 = helper (#⇒invertible x#0) (#⇒invertible y#0)
  where

  helper : Invertible _≈_ 1# _*_ (x - 0#)  Invertible _≈_ 1# _*_ (y - 0#)  x * y # 0#
  helper (x⁻¹ , x⁻¹*x≈1 , x*x⁻¹≈1) (y⁻¹ , y⁻¹*y≈1 , y*y⁻¹≈1)
    = invertibleˡ⇒# (y⁻¹ * x⁻¹ , y⁻¹*x⁻¹*x*y≈1)
    where
    open ≈-Reasoning setoid

    y⁻¹*x⁻¹*x*y≈1 : y⁻¹ * x⁻¹ * (x * y - 0#)  1#
    y⁻¹*x⁻¹*x*y≈1 = begin
      y⁻¹ * x⁻¹ * (x * y - 0#)     ≈⟨ *-congˡ (x-0≈x (x * y)) 
      y⁻¹ * x⁻¹ * (x * y)          ≈⟨ *-assoc y⁻¹ x⁻¹ (x * y) 
      y⁻¹ * (x⁻¹ * (x * y))       ≈⟨ *-congˡ (*-assoc x⁻¹ x y) 
      y⁻¹ * ((x⁻¹ * x) * y)       ≈⟨ *-congˡ (*-congʳ (*-congˡ (x-0≈x x))) 
      y⁻¹ * ((x⁻¹ * (x - 0#)) * y) ≈⟨ *-congˡ (*-congʳ x⁻¹*x≈1) 
      y⁻¹ * (1# * y)               ≈⟨ *-congˡ (*-identityˡ y) 
      y⁻¹ * y                     ≈⟨ *-congˡ (x-0≈x y) 
      y⁻¹ * (y - 0#)               ≈⟨ y⁻¹*y≈1 
      1# 

#-sym : Symmetric _#_
#-sym {x} {y} x#y = invertibleˡ⇒# (- x-y⁻¹ , x-y⁻¹*y-x≈1)
  where
  open ≈-Reasoning setoid
  InvX-Y : Invertible _≈_ 1# _*_ (x - y)
  InvX-Y = #⇒invertible x#y

  x-y⁻¹ = InvX-Y .proj₁

  y-x≈-[x-y] : y - x  - (x - y)
  y-x≈-[x-y] = begin
    y - x     ≈⟨ +-congʳ (-‿involutive y) 
    - - y - x ≈⟨ -‿anti-homo-+ x (- y) 
    - (x - y) 

  x-y⁻¹*y-x≈1 : (- x-y⁻¹) * (y - x)  1#
  x-y⁻¹*y-x≈1 = begin
    (- x-y⁻¹) * (y - x)   ≈⟨ -‿distribˡ-* x-y⁻¹ (y - x) 
    - (x-y⁻¹ * (y - x))    ≈⟨ -‿cong (*-congˡ y-x≈-[x-y]) 
    - (x-y⁻¹ * - (x - y)) ≈⟨ -‿cong (-‿distribʳ-* x-y⁻¹ (x - y)) 
    - - (x-y⁻¹ * (x - y))  ≈⟨ -‿involutive (x-y⁻¹ * ((x - y))) 
    x-y⁻¹ * (x - y)        ≈⟨ InvX-Y .proj₂ .proj₁ 
    1# 

#-congʳ : x  y  x # z  y # z
#-congʳ {x} {y} {z} x≈y x#z = helper (#⇒invertible x#z)
  where

  helper : Invertible _≈_ 1# _*_ (x - z)  y # z
  helper (x-z⁻¹ , x-z⁻¹*x-z≈1# , x-z*x-z⁻¹≈1#)
    = invertibleˡ⇒# (x-z⁻¹ , x-z⁻¹*y-z≈1)
    where
    open ≈-Reasoning setoid

    x-z⁻¹*y-z≈1 : x-z⁻¹ * (y - z)  1#
    x-z⁻¹*y-z≈1 = begin
      x-z⁻¹ * (y - z) ≈⟨ *-congˡ (+-congʳ x≈y) 
      x-z⁻¹ * (x - z)  ≈⟨ x-z⁻¹*x-z≈1# 
      1# 

#-congˡ : y  z  x # y  x # z
#-congˡ y≈z x#y = #-sym (#-congʳ y≈z (#-sym x#y))