{-# OPTIONS --safe --lossy-unification #-}
module Cubical.ZCohomology.CohomologyRings.RP2 where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Relation.Nullary
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Unit
open import Cubical.Data.Bool
open import Cubical.Data.Nat using (ℕ ; zero ; suc ; discreteℕ ; suc-predℕ ; +-comm)
open import Cubical.Data.Int
open import Cubical.Data.Int.IsEven
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Data.Vec
open import Cubical.Data.FinData
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.Algebra.Group.Instances.Bool
open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG)
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.Quotient
open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR)
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-Quotient
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-notationZ
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetTruncation as ST
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_)
open import Cubical.HITs.RPn.Base
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.RingLaws
open import Cubical.ZCohomology.RingStructure.CohomologyRing
open import Cubical.ZCohomology.Groups.RP2
open import Cubical.ZCohomology.CohomologyRings.CupProductProperties
open Iso
module Equiv-RP2-Properties where
private
ℤAG = Ring→AbGroup (CommRing→Ring ℤCR)
<2X,X²> : FinVec ℤ[x] 2
<2X,X²> zero = base (1 ∷ []) 2
<2X,X²> (suc x) = base (2 ∷ []) 1
ℤ[X]/<2X,X²> : CommRing ℓ-zero
ℤ[X]/<2X,X²> = PolyCommRing-Quotient ℤCR <2X,X²>
ℤ[x]/<2x,x²> : Type ℓ-zero
ℤ[x]/<2x,x²> = fst ℤ[X]/<2X,X²>
open IsGroupHom
open gradedRingProperties
open GroupStr (snd BoolGroup) using ()
renaming
( 1g to 0gBool
; _·_ to _+Bool_
; inv to -Bool_
; ·Assoc to +BoolAssoc
; ·IdL to +BoolIdL
; ·IdR to +BoolIdR
; is-set to isSetBool )
open CommRingStr (snd ℤCR) using ()
renaming
( 0r to 0ℤ
; 1r to 1ℤ
; _+_ to _+ℤ_
; -_ to -ℤ_
; _·_ to _·ℤ_
; +Assoc to +ℤAssoc
; +IdL to +ℤIdL
; +IdR to +ℤIdR
; +Comm to +ℤComm
; ·Assoc to ·ℤAssoc
; ·IdL to ·ℤIdL
; ·IdR to ·ℤIdR
; ·DistR+ to ·ℤDistR+
; ·Comm to ·ℤComm
; is-set to isSetℤ )
open RingStr (snd (H*R RP²)) using ()
renaming
( 0r to 0H*
; 1r to 1H*
; _+_ to _+H*_
; -_ to -H*_
; _·_ to _cup_
; +Assoc to +H*Assoc
; +IdL to +H*IdL
; +IdR to +H*IdR
; +Comm to +H*Comm
; ·Assoc to ·H*Assoc
; ·IdL to ·H*IdL
; ·IdR to ·H*IdR
; ·DistR+ to ·H*DistR+
; is-set to isSetH* )
open CommRingStr (snd ℤ[X]) using ()
renaming
( 0r to 0Pℤ
; 1r to 1Pℤ
; _+_ to _+Pℤ_
; -_ to -Pℤ_
; _·_ to _·Pℤ_
; +Assoc to +PℤAssoc
; +IdL to +PℤIdL
; +IdR to +PℤIdR
; +Comm to +PℤComm
; ·Assoc to ·PℤAssoc
; ·IdL to ·PℤIdL
; ·IdR to ·PℤIdR
; ·Comm to ·PℤComm
; ·DistR+ to ·PℤDistR+
; is-set to isSetPℤ )
open CommRingStr (snd ℤ[X]/<2X,X²>) using ()
renaming
( 0r to 0PℤI
; 1r to 1PℤI
; _+_ to _+PℤI_
; -_ to -PℤI_
; _·_ to _·PℤI_
; +Assoc to +PℤIAssoc
; +IdL to +PℤIIdL
; +IdR to +PℤIIdR
; +Comm to +PℤIComm
; ·Assoc to ·PℤIAssoc
; ·IdL to ·PℤIIdL
; ·IdR to ·PℤIIdR
; ·DistR+ to ·PℤIDistR+
; is-set to isSetPℤI )
e₀ = invGroupIso H⁰-RP²≅ℤ
ϕ₀ = fun (fst e₀)
ϕ₀str = snd e₀
ϕ₀⁻¹ = inv (fst e₀)
ϕ₀⁻¹str = snd (invGroupIso e₀)
ϕ₀-sect = rightInv (fst e₀)
ϕ₀-retr = leftInv (fst e₀)
e₂ = invGroupIso H²-RP²≅Bool
ϕ₂ = fun (fst e₂)
ϕ₂str = snd e₂
ϕ₂⁻¹ = inv (fst e₂)
ϕ₂⁻¹str = snd (invGroupIso e₂)
ϕ₂-sect = rightInv (fst e₂)
ϕ₂-retr = leftInv (fst e₂)
Hⁿ-RP²≅0' : (n : ℕ) → (n ≡ 0 → ⊥) → (n ≡ 2 → ⊥) → GroupIso (coHomGr n RP²) UnitGroup₀
Hⁿ-RP²≅0' zero ¬p ¬q = ⊥.rec (¬p refl)
Hⁿ-RP²≅0' one ¬p ¬q = H¹-RP²≅0
Hⁿ-RP²≅0' two ¬p ¬q = ⊥.rec (¬q refl)
Hⁿ-RP²≅0' (suc (suc (suc n))) ¬p ¬q = Hⁿ-RP²≅0 n
data partℕ (k : ℕ) : Type ℓ-zero where
is0 : (k ≡ 0) → partℕ k
is2 : (k ≡ 2) → partℕ k
else : ((k ≡ 0 → ⊥)
× (k ≡ 2 → ⊥)) → partℕ k
part : (k : ℕ) → partℕ k
part k with (discreteℕ k 0)
... | yes p = is0 p
... | no ¬p with (discreteℕ k 2)
... | yes q = is2 q
... | no ¬q = else (¬p , ¬q)
part0 : part 0 ≡ is0 refl
part0 = refl
part2 : part 2 ≡ is2 refl
part2 = refl
ψ₂ : ℤ → Bool
ψ₂ = isEven
ψ₂-pres0 : ψ₂ 0 ≡ true
ψ₂-pres0 = refl
ψ₂str : IsGroupHom (snd ℤG) ψ₂ (snd BoolGroup)
ψ₂str = makeIsGroupHom isEven-pres+
ϕ₂∘ψ₂str : IsGroupHom (snd ℤG) (ϕ₂ ∘ ψ₂) (snd (coHomGr 2 RP²))
ϕ₂∘ψ₂str = isGroupHomComp (ψ₂ , ψ₂str) (ϕ₂ , ϕ₂str)
ℤ[x]→H*-RP² : ℤ[x] → H* RP²
ℤ[x]→H*-RP² = DS-Rec-Set.f _ _ _ _ isSetH*
0H*
ϕ
_+H*_
+H*Assoc
+H*IdR
+H*Comm
base-neutral-eq
base-add-eq
where
ϕ : _
ϕ (zero ∷ []) a = base 0 (ϕ₀ a)
ϕ (one ∷ []) a = base 2 ((ϕ₂ ∘ ψ₂) a)
ϕ (suc (suc n) ∷ []) a = 0H*
base-neutral-eq : _
base-neutral-eq (zero ∷ []) = cong (base 0) (pres1 ϕ₀str) ∙ base-neutral _
base-neutral-eq (one ∷ []) = cong (base 2) (cong ϕ₂ (pres1 ψ₂str) ∙ pres1 ϕ₂str) ∙ base-neutral _
base-neutral-eq (suc (suc n) ∷ []) = refl
base-add-eq : _
base-add-eq (zero ∷ []) a b = (base-add _ _ _) ∙ (cong (base 0) (sym (pres· ϕ₀str _ _)))
base-add-eq (one ∷ []) a b = base-add _ _ _
∙ cong (base 2) (sym (cong ϕ₂ (pres· ψ₂str a b) ∙ pres· ϕ₂str (ψ₂ a) (ψ₂ b)))
base-add-eq (suc (suc n) ∷ []) a b = +H*IdR _
ϕ₀-pres1 : ϕ₀ 1 ≡ 1⌣
ϕ₀-pres1 = refl
ℤ[x]→H*-RP²-pres1Pℤ : ℤ[x]→H*-RP² (1Pℤ) ≡ 1H*
ℤ[x]→H*-RP²-pres1Pℤ = refl
ℤ[x]→H*-RP²-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-RP² (x +Pℤ y) ≡ ℤ[x]→H*-RP² x +H* ℤ[x]→H*-RP² y
ℤ[x]→H*-RP²-pres+ x y = refl
ϕ₀-gen : (n : ℕ) → (f : coHom n RP²) → ϕ₀ (pos 1) ⌣ f ≡ f
ϕ₀-gen n f = cong (λ X → X ⌣ f) ϕ₀-pres1 ∙ rUnit⌣ n f
open pres⌣
pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) →
ℤ[x]→H*-RP² (base (n ∷ []) a ·Pℤ base (m ∷ []) b)
≡ ℤ[x]→H*-RP² (base (n ∷ []) a) cup ℤ[x]→H*-RP² (base (m ∷ []) b)
pres·-base-case-int zero a zero b =
cong (base 0) (ϕₙ⌣ϕₘ ϕ₀ ϕ₀str ϕ₀ ϕ₀str ϕ₀ ϕ₀str (ϕ₀-gen _ _) a b)
pres·-base-case-int zero a one b =
cong (base 2) (ϕₙ⌣ϕₘ ϕ₀ ϕ₀str (ϕ₂ ∘ ψ₂) ϕ₂∘ψ₂str (ϕ₂ ∘ ψ₂) ϕ₂∘ψ₂str (ϕ₀-gen _ _) a b)
pres·-base-case-int zero a (suc (suc m)) b = refl
pres·-base-case-int one a zero b = cong ℤ[x]→H*-RP²
(·PℤComm (base (1 ∷ []) a) (base (0 ∷ []) b))
∙ pres·-base-case-int 0 b 1 a
∙ gradCommRing RP² 0 2 _ _
pres·-base-case-int one a one b = sym (base-neutral 4) ∙
cong (base 4)
(isOfHLevelRetractFromIso 1 (fst (Hⁿ-RP²≅0 1)) isPropUnit _ _)
pres·-base-case-int one a (suc (suc m)) b = refl
pres·-base-case-int (suc (suc n)) a m b = refl
pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) →
ℤ[x]→H*-RP² (base v a ·Pℤ base v' b)
≡ ℤ[x]→H*-RP² (base v a) cup ℤ[x]→H*-RP² (base v' b)
pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b
ℤ[x]→H*-RP²-pres· : (x y : ℤ[x]) → ℤ[x]→H*-RP² (x ·Pℤ y) ≡ ℤ[x]→H*-RP² x cup ℤ[x]→H*-RP² y
ℤ[x]→H*-RP²-pres· = DS-Ind-Prop.f _ _ _ _
(λ x p q i y j → isSetH* _ _ (p y) (q y) i j)
(λ y → refl)
base-case
λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y)
where
base-case : _
base-case (n ∷ []) a = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
(sym (RingTheory.0RightAnnihilates (H*R RP²) _))
(λ v' b → pres·-base-case-vec (n ∷ []) a v' b)
λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*DistR+ _ _ _)
ℤ[x]→H*-RP²-cancelX : (x : Fin 2) → ℤ[x]→H*-RP² (<2X,X²> x) ≡ 0H*
ℤ[x]→H*-RP²-cancelX zero = cong (base 2) (pres1 ϕ₂str) ∙ base-neutral _
ℤ[x]→H*-RP²-cancelX one = refl
ℤ[X]→H*-RP² : RingHom (CommRing→Ring ℤ[X]) (H*R RP²)
fst ℤ[X]→H*-RP² = ℤ[x]→H*-RP²
snd ℤ[X]→H*-RP² = makeIsRingHom ℤ[x]→H*-RP²-pres1Pℤ ℤ[x]→H*-RP²-pres+ ℤ[x]→H*-RP²-pres·
ℤ[X]/<2X,X²>→H*R-RP² : RingHom (CommRing→Ring ℤ[X]/<2X,X²>) (H*R RP²)
ℤ[X]/<2X,X²>→H*R-RP² =
Quotient-FGideal-CommRing-Ring.inducedHom ℤ[X] (H*R RP²) ℤ[X]→H*-RP² <2X,X²> ℤ[x]→H*-RP²-cancelX
ℤ[x]/<2x,x²>→H*-RP² : ℤ[x]/<2x,x²> → H* RP²
ℤ[x]/<2x,x²>→H*-RP² = fst ℤ[X]/<2X,X²>→H*R-RP²
ℤ[x]/<2x,x²>→H*-RP²-pres0 : ℤ[x]/<2x,x²>→H*-RP² 0PℤI ≡ 0H*
ℤ[x]/<2x,x²>→H*-RP²-pres0 = refl
ℤ[x]/<2x,x²>→H*-RP²-pres+ : (x y : ℤ[x]/<2x,x²>) →
ℤ[x]/<2x,x²>→H*-RP² ( x +PℤI y) ≡ ℤ[x]/<2x,x²>→H*-RP² x +H* ℤ[x]/<2x,x²>→H*-RP² y
ℤ[x]/<2x,x²>→H*-RP²-pres+ x y = IsRingHom.pres+ (snd ℤ[X]/<2X,X²>→H*R-RP²) x y
ψ₂⁻¹ : Bool → ℤ
ψ₂⁻¹ false = 1
ψ₂⁻¹ true = 0
private
Λ : (x : Bool) → ℤ[x]/<2x,x²>
Λ x = [ (base (1 ∷ []) (ψ₂⁻¹ x)) ]
Λ-pres+ : (x y : Bool) → Λ x +PℤI Λ y ≡ Λ (x +Bool y)
Λ-pres+ false false = cong [_] (base-add _ _ _)
∙ eq/ (base (1 ∷ []) 2)
(base (1 ∷ []) 0)
∣ ((λ {zero → base (0 ∷ []) 1 ; one → 0Pℤ}) , helper) ∣₁
where
helper : _
helper = base-add _ _ _
∙ sym (cong (λ X → ((base (1 ∷ []) 2) +Pℤ X)) (+PℤIdR _) ∙ +PℤIdR _)
Λ-pres+ false true = cong [_] (base-add _ _ _)
Λ-pres+ true false = cong [_] (base-add _ _ _)
Λ-pres+ true true = cong [_] (base-add _ _ _)
ϕ⁻¹ : (k : ℕ) → (a : coHom k RP²) → (x : partℕ k) → ℤ[x]/<2x,x²>
ϕ⁻¹ k a (is0 x) = [ (base (0 ∷ []) (ϕ₀⁻¹ (substG x a))) ]
ϕ⁻¹ k a (is2 x) = [ (base (1 ∷ []) ((ψ₂⁻¹ ∘ ϕ₂⁻¹) (substG x a))) ]
ϕ⁻¹ k a (else x) = 0PℤI
H*-RP²→ℤ[x]/<2x,x²> : H* RP² → ℤ[x]/<2x,x²>
H*-RP²→ℤ[x]/<2x,x²> = DS-Rec-Set.f _ _ _ _ isSetPℤI
0PℤI
(λ { k a → ϕ⁻¹ k a (part k)})
_+PℤI_
+PℤIAssoc
+PℤIIdR
+PℤIComm
(λ k → base-neutral-eq k (part k))
λ k a b → base-add-eq k a b (part k)
where
base-neutral-eq : (k : ℕ) → (x : partℕ k) → ϕ⁻¹ k (0ₕ k) x ≡ 0PℤI
base-neutral-eq k (is0 x) = cong [_] (cong (base {AGP = λ _ → snd ℤAG} (0 ∷ []))
(cong ϕ₀⁻¹ (substG0 x) ∙ pres1 ϕ₀⁻¹str)
∙ (base-neutral _))
base-neutral-eq k (is2 x) = cong [_] (cong (base (1 ∷ []))
(cong (ψ₂⁻¹ ∘ ϕ₂⁻¹) (substG0 x)
∙ cong ψ₂⁻¹ (pres1 ϕ₂⁻¹str))
∙ base-neutral _)
base-neutral-eq k (else x) = refl
base-add-eq : (k : ℕ) → (a b : coHom k RP²) → (x : partℕ k) →
(ϕ⁻¹ k a x) +PℤI (ϕ⁻¹ k b x) ≡ ϕ⁻¹ k (a +ₕ b) x
base-add-eq k a b (is0 x) = cong [_] (base-add _ _ _
∙ cong (base (0 ∷ [])) (sym (pres· ϕ₀⁻¹str _ _)
∙ cong ϕ₀⁻¹ (substG+ _ _ _)))
base-add-eq k a b (is2 x) = Λ-pres+ (ϕ₂⁻¹ (substG x a)) (ϕ₂⁻¹ (substG x b))
∙ cong [_] (cong (λ X → base {AGP = λ _ → snd ℤAG} (1 ∷ []) (ψ₂⁻¹ X))
((sym (pres· ϕ₂⁻¹str _ _) ∙ cong ϕ₂⁻¹ (substG+ _ _ _))))
base-add-eq k a b (else x) = +PℤIIdR _
H*-RP²→ℤ[x]/<2x,x²>-pres0 : H*-RP²→ℤ[x]/<2x,x²> 0H* ≡ 0PℤI
H*-RP²→ℤ[x]/<2x,x²>-pres0 = refl
H*-RP²→ℤ[x]/<2x,x²>-pres+ : (x y : H* RP²) →
H*-RP²→ℤ[x]/<2x,x²> (x +H* y) ≡ (H*-RP²→ℤ[x]/<2x,x²> x) +PℤI (H*-RP²→ℤ[x]/<2x,x²> y)
H*-RP²→ℤ[x]/<2x,x²>-pres+ x y = refl
ψ₂-sect : (x : Bool) → ψ₂ (ψ₂⁻¹ x) ≡ x
ψ₂-sect false = refl
ψ₂-sect true = refl
e-sect-base : (k : ℕ) → (a : coHom k RP²) → (x : partℕ k) →
ℤ[x]/<2x,x²>→H*-RP² (ϕ⁻¹ k a x) ≡ base k a
e-sect-base k a (is0 x) = cong (base 0) (ϕ₀-sect (substG x a))
∙ sym (constSubstCommSlice _ _ base x a)
e-sect-base k a (is2 x) = cong (base 2) (cong ϕ₂ (ψ₂-sect _) ∙ ϕ₂-sect _)
∙ sym (constSubstCommSlice _ _ base x a)
e-sect-base k a (else x) = sym (base-neutral k)
∙ cong (base k) (unitGroupEq (Hⁿ-RP²≅0' k (fst x) (snd x)) _ _)
e-sect : (x : H* RP²) → ℤ[x]/<2x,x²>→H*-RP² (H*-RP²→ℤ[x]/<2x,x²> x) ≡ x
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
refl
(λ k a → e-sect-base k a (part k))
λ {U V} ind-U ind-V → ℤ[x]/<2x,x²>→H*-RP²-pres+ _ _ ∙ cong₂ _+H*_ ind-U ind-V
e-retr-ψ₂-false : (a : ℤ) → (isEven a ≡ false) → Λ (ψ₂ a) ≡ [ base (1 ∷ []) a ]
e-retr-ψ₂-false a x = cong [_] (cong (base (1 ∷ [])) (cong ψ₂⁻¹ x))
∙ eq/ (base (1 ∷ []) 1) (base (1 ∷ []) a)
∣ ((λ {zero → base (0 ∷ []) (-ℤ m) ; one → 0Pℤ }) , helper) ∣₁
where
m = fst (isEvenFalse a x)
helper : _
helper = base-add _ _ _
∙ cong (base (1 ∷ [])) (cong (λ X → 1 +ℤ (-ℤ X)) (snd (isEvenFalse a x))
∙ cong (λ X → 1 +ℤ X) (-Dist+ _ _)
∙ +ℤAssoc _ _ _
∙ +ℤIdL _)
∙ sym (cong (λ X → ((base (0 ∷ []) (-ℤ m)) ·Pℤ base (1 ∷ []) 2) +Pℤ X) (+PℤIdR _)
∙ +PℤIdR _
∙ cong (base (1 ∷ [])) (sym (-DistL· _ _) ∙ cong -ℤ_ (·ℤComm _ _)))
e-retr-ψ₂-true : (a : ℤ) → (isEven a ≡ true) → Λ (ψ₂ a) ≡ [ base (1 ∷ []) a ]
e-retr-ψ₂-true a x = cong [_] (cong (base (1 ∷ [])) (cong ψ₂⁻¹ x))
∙ eq/ (base (1 ∷ []) 0) (base (1 ∷ []) a)
∣ ((λ { zero → base (0 ∷ []) (-ℤ m) ; one → 0Pℤ }) , helper) ∣₁
where
m = fst (isEvenTrue a x)
helper : _
helper = base-add _ _ _
∙ cong (base (1 ∷ [])) (+ℤIdL _ ∙ cong -ℤ_ (snd (isEvenTrue a x) ∙ ·ℤComm 2 m))
∙ sym (cong (λ X → (base (0 ∷ []) (-ℤ m) ·Pℤ base (1 ∷ []) 2) +Pℤ X) (+PℤIdR _)
∙ +PℤIdR _
∙ cong (base (1 ∷ [])) (sym (-DistL· _ _)))
e-retr-ψ₂ : (a : ℤ) → ((isEven a ≡ false) ⊎ (isEven a ≡ true)) → Λ (ψ₂ a) ≡ [ base (1 ∷ []) a ]
e-retr-ψ₂ a (inl x) = e-retr-ψ₂-false a x
e-retr-ψ₂ a (inr x) = e-retr-ψ₂-true a x
e-retr-base : (k : ℕ) → (a : ℤ) →
H*-RP²→ℤ[x]/<2x,x²> (ℤ[x]/<2x,x²>→H*-RP² [ base (k ∷ []) a ]) ≡ [ base (k ∷ []) a ]
e-retr-base zero a = cong [_] (cong (base (zero ∷ []))
(cong ϕ₀⁻¹ (transportRefl (ϕ₀ a)) ∙ ϕ₀-retr a))
e-retr-base one a = cong [_] (cong (base (1 ∷ [])) (cong (ψ₂⁻¹ ∘ ϕ₂⁻¹) (transportRefl _)))
∙ cong [_] (cong (base (1 ∷ [])) (cong ψ₂⁻¹ (ϕ₂-retr (ψ₂ a))))
∙ e-retr-ψ₂ a (dichotomyBoolSym (isEven a))
e-retr-base (suc (suc k)) a = eq/ 0Pℤ (base ((suc (suc k)) ∷ []) a)
∣ ((λ { zero → 0Pℤ ; one → base (k ∷ []) (-ℤ a) }) , helper) ∣₁
where
helper : _
helper = +PℤIdL _
∙ cong₂ base (cong (λ X → X ∷ []) (sym (+-comm k 2))) (sym (·ℤIdR _))
∙ sym (+PℤIdL _ ∙ +PℤIdR _ )
e-retr : (x : ℤ[x]/<2x,x²>) → H*-RP²→ℤ[x]/<2x,x²> (ℤ[x]/<2x,x²>→H*-RP² x) ≡ x
e-retr = SQ.elimProp (λ _ → isSetPℤI _ _)
(DS-Ind-Prop.f _ _ _ _ (λ _ → isSetPℤI _ _)
refl
(λ { (k ∷ []) a → e-retr-base k a})
λ {U V} ind-U ind-V → cong H*-RP²→ℤ[x]/<2x,x²> (ℤ[x]/<2x,x²>→H*-RP²-pres+ [ U ] [ V ])
∙ cong₂ _+PℤI_ ind-U ind-V)
module _ where
open Equiv-RP2-Properties
RP²-CohomologyRing : RingEquiv (CommRing→Ring ℤ[X]/<2X,X²>) (H*R RP²)
fst RP²-CohomologyRing = isoToEquiv is
where
is : Iso ℤ[x]/<2x,x²> (H* RP²)
fun is = ℤ[x]/<2x,x²>→H*-RP²
inv is = H*-RP²→ℤ[x]/<2x,x²>
rightInv is = e-sect
leftInv is = e-retr
snd RP²-CohomologyRing = snd ℤ[X]/<2X,X²>→H*R-RP²
CohomologyRing-RP² : RingEquiv (H*R RP²) (CommRing→Ring ℤ[X]/<2X,X²>)
CohomologyRing-RP² = RingEquivs.invRingEquiv RP²-CohomologyRing