{-# OPTIONS --safe #-} module Cubical.Data.Sum.Base where open import Cubical.Relation.Nullary.Base open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level A B C D : Type ℓ data _⊎_ (A : Type ℓ)(B : Type ℓ') : Type (ℓ-max ℓ ℓ') where inl : A → A ⊎ B inr : B → A ⊎ B rec : {C : Type ℓ} → (A → C) → (B → C) → A ⊎ B → C rec f _ (inl x) = f x rec _ g (inr y) = g y elim : {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A ⊎ B) → C x elim f _ (inl x) = f x elim _ g (inr y) = g y map : (A → C) → (B → D) → A ⊎ B → C ⊎ D map f _ (inl x) = inl (f x) map _ g (inr y) = inr (g y) _⊎?_ : {P Q : Type ℓ} → Dec P → Dec Q → Dec (P ⊎ Q) P? ⊎? Q? with P? | Q? ... | yes p | _ = yes (inl p) ... | no _ | yes q = yes (inr q) ... | no ¬p | no ¬q = no λ { (inl p) → ¬p p ; (inr q) → ¬q q }