{-# OPTIONS --safe #-}
module Cubical.Data.Int.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Bool
open import Cubical.Data.Nat hiding (_+_ ; _·_) renaming (isEven to isEvenℕ ; isOdd to isOddℕ)
open import Cubical.Data.Fin.Inductive.Base
infix 8 -_
infixl 7 _·_
infixl 6 _+_ _-_
data ℤ : Type₀ where
pos : (n : ℕ) → ℤ
negsuc : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
neg zero = pos zero
neg (suc n) = negsuc n
sucℤ : ℤ → ℤ
sucℤ (pos n) = pos (suc n)
sucℤ (negsuc zero) = pos zero
sucℤ (negsuc (suc n)) = negsuc n
predℤ : ℤ → ℤ
predℤ (pos zero) = negsuc zero
predℤ (pos (suc n)) = pos n
predℤ (negsuc n) = negsuc (suc n)
isEven : ℤ → Bool
isEven (pos n) = isEvenℕ n
isEven (negsuc n) = isOddℕ n
isOdd : ℤ → Bool
isOdd (pos n) = isOddℕ n
isOdd (negsuc n) = isEvenℕ n
abs : ℤ → ℕ
abs (pos n) = n
abs (negsuc n) = suc n
_ℕ-_ : ℕ → ℕ → ℤ
a ℕ- 0 = pos a
0 ℕ- suc b = negsuc b
suc a ℕ- suc b = a ℕ- b
_+pos_ : ℤ → ℕ → ℤ
z +pos 0 = z
z +pos (suc n) = sucℤ (z +pos n)
_+negsuc_ : ℤ → ℕ → ℤ
z +negsuc 0 = predℤ z
z +negsuc (suc n) = predℤ (z +negsuc n)
_+_ : ℤ → ℤ → ℤ
m + pos n = m +pos n
m + negsuc n = m +negsuc n
-_ : ℤ → ℤ
- pos zero = pos zero
- pos (suc n) = negsuc n
- negsuc n = pos (suc n)
_-_ : ℤ → ℤ → ℤ
m - n = m + (- n)
_·_ : ℤ → ℤ → ℤ
pos zero · m = pos zero
pos (suc n) · m = m + pos n · m
negsuc zero · m = - m
negsuc (suc n) · m = - m + negsuc n · m
open import Cubical.Data.Nat.Literals public
instance
fromNatℤ : HasFromNat ℤ
fromNatℤ = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n }
instance
fromNegℤ : HasFromNeg ℤ
fromNegℤ = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
sumFinℤ : {n : ℕ} (f : Fin n → ℤ) → ℤ
sumFinℤ {n = n} f = sumFinGen {n = n} _+_ 0 f
sumFinℤId : (n : ℕ) {f g : Fin n → ℤ}
→ ((x : _) → f x ≡ g x) → sumFinℤ {n = n} f ≡ sumFinℤ {n = n} g
sumFinℤId n t i = sumFinℤ {n = n} λ x → t x i