{-# OPTIONS --safe #-}
module Cubical.HITs.SetQuotients.Properties where
open import Cubical.HITs.SetQuotients.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
open import Cubical.HITs.TypeQuotients as TypeQuot using (_/ₜ_ ; [_] ; eq/)
open import Cubical.HITs.PropositionalTruncation as PropTrunc
using (∥_∥₁ ; ∣_∣₁ ; squash₁) renaming (rec to propRec)
open import Cubical.HITs.SetTruncation as SetTrunc
using (∥_∥₂ ; ∣_∣₂ ; squash₂ ; isSetSetTrunc)
private
variable
ℓ ℓ' ℓ'' : Level
A B C Q : Type ℓ
R S T W : A → A → Type ℓ
elimProp : {P : A / R → Type ℓ}
→ (∀ x → isProp (P x))
→ (∀ a → P [ a ])
→ ∀ x → P x
elimProp prop f [ x ] = f x
elimProp prop f (squash/ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (prop x))
(g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j
where
g = elimProp prop f
elimProp prop f (eq/ a b r i) =
isProp→PathP (λ i → prop (eq/ a b r i)) (f a) (f b) i
elimProp2 : {P : A / R → B / S → Type ℓ}
→ (∀ x y → isProp (P x y))
→ (∀ a b → P [ a ] [ b ])
→ ∀ x y → P x y
elimProp2 prop f =
elimProp (λ x → isPropΠ (prop x)) λ a →
elimProp (prop [ a ]) (f a)
elimProp3 : {P : A / R → B / S → C / T → Type ℓ}
→ (∀ x y z → isProp (P x y z))
→ (∀ a b c → P [ a ] [ b ] [ c ])
→ ∀ x y z → P x y z
elimProp3 prop f =
elimProp (λ x → isPropΠ2 (prop x)) λ a →
elimProp2 (prop [ a ]) (f a)
elimProp4 : {P : A / R → B / S → C / T → Q / W → Type ℓ}
→ (∀ x y z t → isProp (P x y z t))
→ (∀ a b c d → P [ a ] [ b ] [ c ] [ d ])
→ ∀ x y z t → P x y z t
elimProp4 prop f =
elimProp (λ x → isPropΠ3 (prop x)) λ a →
elimProp3 (prop [ a ]) (f a)
elimContr : {P : A / R → Type ℓ}
→ (∀ a → isContr (P [ a ]))
→ ∀ x → P x
elimContr contr =
elimProp (elimProp (λ _ → isPropIsProp) λ _ → isContr→isProp (contr _)) λ _ →
contr _ .fst
elimContr2 : {P : A / R → B / S → Type ℓ}
→ (∀ a b → isContr (P [ a ] [ b ]))
→ ∀ x y → P x y
elimContr2 contr =
elimContr λ _ →
isOfHLevelΠ 0 (elimContr λ _ → inhProp→isContr (contr _ _) isPropIsContr)
[]surjective : (x : A / R) → ∃[ a ∈ A ] [ a ] ≡ x
[]surjective = elimProp (λ x → squash₁) (λ a → ∣ a , refl ∣₁)
elim : {P : A / R → Type ℓ}
→ (∀ x → isSet (P x))
→ (f : (a : A) → (P [ a ]))
→ ((a b : A) (r : R a b) → PathP (λ i → P (eq/ a b r i)) (f a) (f b))
→ ∀ x → P x
elim set f feq [ a ] = f a
elim set f feq (eq/ a b r i) = feq a b r i
elim set f feq (squash/ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 set
(g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j
where
g = elim set f feq
rec : isSet B
→ (f : A → B)
→ ((a b : A) (r : R a b) → f a ≡ f b)
→ A / R → B
rec set f feq [ a ] = f a
rec set f feq (eq/ a b r i) = feq a b r i
rec set f feq (squash/ x y p q i j) = set (g x) (g y) (cong g p) (cong g q) i j
where
g = rec set f feq
rec2 : isSet C
→ (f : A → B → C)
→ (∀ a b c → R a b → f a c ≡ f b c)
→ (∀ a b c → S b c → f a b ≡ f a c)
→ A / R → B / S → C
rec2 {_} {C} {_} {A} {_} {B} {_} {R} {_} {S} set f feql feqr = fun
where
fun₀ : A → B / S → C
fun₀ a [ b ] = f a b
fun₀ a (eq/ b c r i) = feqr a b c r i
fun₀ a (squash/ x y p q i j) = isSet→SquareP (λ _ _ → set)
(λ _ → fun₀ a x)
(λ _ → fun₀ a y)
(λ i → fun₀ a (p i))
(λ i → fun₀ a (q i)) j i
toPath : ∀ (a b : A) (x : R a b) (y : B / S) → fun₀ a y ≡ fun₀ b y
toPath a b rab = elimProp (λ _ → set _ _) λ c → feql a b c rab
fun : A / R → B / S → C
fun [ a ] y = fun₀ a y
fun (eq/ a b r i) y = toPath a b r y i
fun (squash/ x y p q i j) z = isSet→SquareP (λ _ _ → set)
(λ _ → fun x z)
(λ _ → fun y z)
(λ i → fun (p i) z)
(λ i → fun (q i) z) j i
typeQuotSetTruncIso : Iso (A / R) ∥ A /ₜ R ∥₂
Iso.fun typeQuotSetTruncIso = rec isSetSetTrunc (λ a → ∣ [ a ] ∣₂)
λ a b r → cong ∣_∣₂ (eq/ a b r)
Iso.inv typeQuotSetTruncIso = SetTrunc.rec squash/ (TypeQuot.rec [_] eq/)
Iso.rightInv typeQuotSetTruncIso = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _))
(TypeQuot.elimProp (λ _ → squash₂ _ _) λ _ → refl)
Iso.leftInv typeQuotSetTruncIso = elimProp (λ _ → squash/ _ _) λ _ → refl
module rec→Gpd {B : Type ℓ''} (Bgpd : isGroupoid B)
(f : A → B)
(feq : ∀ (a b : A) → R a b → f a ≡ f b)
(fprop : ∀ (a b : A) → isProp (f a ≡ f b))
where
fun : A / R → B
fun = f₁ ∘ f₂
where
f₁ : ∥ A /ₜ R ∥₂ → B
f₁ = SetTrunc.rec→Gpd.fun Bgpd f/ congF/Const
where
f/ : A /ₜ R → B
f/ = TypeQuot.rec f feq
congF/Const : (a b : A /ₜ R) (p q : a ≡ b) → cong f/ p ≡ cong f/ q
congF/Const =
TypeQuot.elimProp2
(λ _ _ → isPropΠ2 λ _ _ → Bgpd _ _ _ _)
(λ a b p q → fprop a b (cong f/ p) (cong f/ q))
f₂ : A / R → ∥ A /ₜ R ∥₂
f₂ = Iso.fun typeQuotSetTruncIso
setQuotUniversalIso : isSet B
→ Iso (A / R → B) (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b))
Iso.fun (setQuotUniversalIso Bset) g = (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i)
Iso.inv (setQuotUniversalIso Bset) h = rec Bset (fst h) (snd h)
Iso.rightInv (setQuotUniversalIso Bset) h = refl
Iso.leftInv (setQuotUniversalIso Bset) g =
funExt λ x →
PropTrunc.rec
(Bset (out (intro g) x) (g x))
(λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur)))
([]surjective x)
where
intro = Iso.fun (setQuotUniversalIso Bset)
out = Iso.inv (setQuotUniversalIso Bset)
setQuotUniversal : isSet B
→ (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b))
setQuotUniversal Bset = isoToEquiv (setQuotUniversalIso Bset)
open BinaryRelation
setQuotUnaryOp : (-_ : A → A)
→ (∀ a a' → R a a' → R (- a) (- a'))
→ (A / R → A / R)
setQuotUnaryOp -_ h = rec squash/ (λ a → [ - a ]) (λ a b x → eq/ _ _ (h _ _ x))
setQuotUniversal2Iso : isSet C → isRefl R → isRefl S
→ Iso (A / R → B / S → C)
(Σ[ _∗_ ∈ (A → B → C) ] (∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b'))
Iso.fun (setQuotUniversal2Iso {R = R} {S = S} Bset isReflR isReflS) _∗/_ = _∗_ , h
where
_∗_ = λ a b → [ a ] ∗/ [ b ]
h : ∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b'
h a a' b b' r s = cong (_∗/ [ b ]) (eq/ _ _ r) ∙ cong ([ a' ] ∗/_) (eq/ _ _ s)
Iso.inv (setQuotUniversal2Iso {R = R} {S = S} Bset isReflR isReflS) (_∗_ , h) =
rec2 Bset _∗_ hleft hright
where
hleft : ∀ a a' b → R a a' → (a ∗ b) ≡ (a' ∗ b)
hleft _ _ b r = h _ _ _ _ r (isReflS b)
hright : ∀ a b b' → S b b' → (a ∗ b) ≡ (a ∗ b')
hright a _ _ r = h _ _ _ _ (isReflR a) r
Iso.rightInv (setQuotUniversal2Iso Bset isReflR isReflS) (_∗_ , h) =
Σ≡Prop (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ2 λ _ _ → Bset _ _) refl
Iso.leftInv (setQuotUniversal2Iso Bset isReflR isReflS) _∗/_ =
funExt₂ (elimProp2 (λ _ _ → Bset _ _) λ _ _ → refl)
setQuotUniversal2 : isSet C → isRefl R → isRefl S
→ (A / R → B / S → C)
≃ (Σ[ _∗_ ∈ (A → B → C) ] (∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b'))
setQuotUniversal2 Bset isReflR isReflS =
isoToEquiv (setQuotUniversal2Iso Bset isReflR isReflS)
setQuotBinOp : isRefl R → isRefl S
→ (_∗_ : A → B → C)
→ (∀ a a' b b' → R a a' → S b b' → T (a ∗ b) (a' ∗ b'))
→ (A / R → B / S → C / T)
setQuotBinOp isReflR isReflS _∗_ h =
rec2 squash/ (λ a b → [ a ∗ b ])
(λ _ _ _ r → eq/ _ _ (h _ _ _ _ r (isReflS _)))
(λ _ _ _ s → eq/ _ _ (h _ _ _ _ (isReflR _) s))
setQuotSymmBinOp : isRefl R → isTrans R
→ (_∗_ : A → A → A)
→ (∀ a b → R (a ∗ b) (b ∗ a))
→ (∀ a a' b → R a a' → R (a ∗ b) (a' ∗ b))
→ (A / R → A / R → A / R)
setQuotSymmBinOp {A = A} {R = R} isReflR isTransR _∗_ ∗Rsymm h =
setQuotBinOp isReflR isReflR _∗_ h'
where
h' : ∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b')
h' a a' b b' ra rb =
isTransR _ _ _ (h a a' b ra)
(isTransR _ _ _ (∗Rsymm a' b)
(isTransR _ _ _ (h b b' a' rb) (∗Rsymm b' a')))
effective : (Rprop : isPropValued R) (Requiv : isEquivRel R)
→ (a b : A) → [ a ] ≡ [ b ] → R a b
effective {A = A} {R = R} Rprop (equivRel R/refl R/sym R/trans) a b p =
transport aa≡ab (R/refl _)
where
helper : A / R → hProp _
helper =
rec isSetHProp
(λ c → (R a c , Rprop a c))
(λ c d cd →
Σ≡Prop (λ _ → isPropIsProp)
(hPropExt (Rprop a c) (Rprop a d)
(λ ac → R/trans _ _ _ ac cd)
(λ ad → R/trans _ _ _ ad (R/sym _ _ cd))))
aa≡ab : R a a ≡ R a b
aa≡ab i = helper (p i) .fst
isEquivRel→effectiveIso : isPropValued R → isEquivRel R
→ (a b : A) → Iso ([ a ] ≡ [ b ]) (R a b)
Iso.fun (isEquivRel→effectiveIso {R = R} Rprop Req a b) = effective Rprop Req a b
Iso.inv (isEquivRel→effectiveIso {R = R} Rprop Req a b) = eq/ a b
Iso.rightInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = Rprop a b _ _
Iso.leftInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = squash/ _ _ _ _
isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R
isEquivRel→isEffective Rprop Req a b =
isoToIsEquiv (invIso (isEquivRel→effectiveIso Rprop Req a b))
truncRelIso : Iso (A / R) (A / (λ a b → ∥ R a b ∥₁))
Iso.fun truncRelIso = rec squash/ [_] λ _ _ r → eq/ _ _ ∣ r ∣₁
Iso.inv truncRelIso = rec squash/ [_] λ _ _ → PropTrunc.rec (squash/ _ _) λ r → eq/ _ _ r
Iso.rightInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl
Iso.leftInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl
truncRelEquiv : A / R ≃ A / (λ a b → ∥ R a b ∥₁)
truncRelEquiv = isoToEquiv truncRelIso
isEquivRel→TruncIso : isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) ∥ R a b ∥₁
isEquivRel→TruncIso {A = A} {R = R} Req a b =
compIso
(isProp→Iso (squash/ _ _) (squash/ _ _)
(cong (Iso.fun truncRelIso)) (cong (Iso.inv truncRelIso)))
(isEquivRel→effectiveIso (λ _ _ → PropTrunc.isPropPropTrunc) ∥R∥eq a b)
where
open isEquivRel
∥R∥eq : isEquivRel λ a b → ∥ R a b ∥₁
reflexive ∥R∥eq a = ∣ reflexive Req a ∣₁
symmetric ∥R∥eq a b = PropTrunc.map (symmetric Req a b)
transitive ∥R∥eq a b c = PropTrunc.map2 (transitive Req a b c)
discreteSetQuotients : isEquivRel R
→ (∀ a₀ a₁ → Dec (R a₀ a₁))
→ Discrete (A / R)
discreteSetQuotients {A = A} {R = R} Req Rdec =
elimProp2
(λ _ _ → isPropDec (squash/ _ _))
λ _ _ → EquivPresDec
(isoToEquiv (invIso (isEquivRel→TruncIso Req _ _)))
(Dec∥∥ (Rdec _ _))
relBiimpl→TruncIso : ({a b : A} → R a b → S a b) → ({a b : A} → S a b → R a b) → Iso (A / R) (A / S)
Iso.fun (relBiimpl→TruncIso R→S S→R) = rec squash/ [_] λ _ _ Rab → eq/ _ _ (R→S Rab)
Iso.inv (relBiimpl→TruncIso R→S S→R) = rec squash/ [_] λ _ _ Sab → eq/ _ _ (S→R Sab)
Iso.rightInv (relBiimpl→TruncIso R→S S→R) = elimProp (λ _ → squash/ _ _) λ _ → refl
Iso.leftInv (relBiimpl→TruncIso R→S S→R) = elimProp (λ _ → squash/ _ _) λ _ → refl
descendMapPath : {M : Type ℓ} (f g : A / R → M) (isSetM : isSet M)
→ ((x : A) → f [ x ] ≡ g [ x ])
→ f ≡ g
descendMapPath f g isSetM path i x =
propRec
(isSetM (f x) (g x))
(λ {(x' , p) →
f x ≡⟨ cong f (sym p) ⟩
f [ x' ] ≡⟨ path x' ⟩
g [ x' ] ≡⟨ cong g p ⟩
g x ∎ })
([]surjective x)
i