{-# OPTIONS --safe #-}
module Cubical.HITs.SetTruncation.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Pointed.Base
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
renaming (rec to pRec ; elim to pElim) hiding (elim2 ; elim3 ; rec2 ; map)
open import Cubical.HITs.SetTruncation.Base
private
variable
ℓ ℓ' ℓ'' ℓa ℓb ℓc ℓd : Level
A : Type ℓa
B : Type ℓb
C : Type ℓc
D : Type ℓd
isSetPathImplicit : {x y : ∥ A ∥₂} → isSet (x ≡ y)
isSetPathImplicit = isOfHLevelPath 2 squash₂ _ _
rec : isSet B → (A → B) → ∥ A ∥₂ → B
rec Bset f ∣ x ∣₂ = f x
rec Bset f (squash₂ x y p q i j) =
Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j
rec2 : isSet C → (A → B → C) → ∥ A ∥₂ → ∥ B ∥₂ → C
rec2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y
rec2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) =
Cset _ _ (cong (rec2 Cset f ∣ x ∣₂) p) (cong (rec2 Cset f ∣ x ∣₂) q) i j
rec2 Cset f (squash₂ x y p q i j) z =
Cset _ _ (cong (λ a → rec2 Cset f a z) p) (cong (λ a → rec2 Cset f a z) q) i j
elim : {B : ∥ A ∥₂ → Type ℓ}
(Bset : (x : ∥ A ∥₂) → isSet (B x))
(f : (a : A) → B (∣ a ∣₂))
(x : ∥ A ∥₂) → B x
elim Bset f ∣ a ∣₂ = f a
elim Bset f (squash₂ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 Bset _ _
(cong (elim Bset f) p) (cong (elim Bset f) q) (squash₂ x y p q) i j
elim2 : {C : ∥ A ∥₂ → ∥ B ∥₂ → Type ℓ}
(Cset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) → isSet (C x y)))
(f : (a : A) (b : B) → C ∣ a ∣₂ ∣ b ∣₂)
(x : ∥ A ∥₂) (y : ∥ B ∥₂) → C x y
elim2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y
elim2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) =
isOfHLevel→isOfHLevelDep 2 (λ a → Cset ∣ x ∣₂ a) _ _
(cong (elim2 Cset f ∣ x ∣₂) p) (cong (elim2 Cset f ∣ x ∣₂) q) (squash₂ y z p q) i j
elim2 Cset f (squash₂ x y p q i j) z =
isOfHLevel→isOfHLevelDep 2 (λ a → Cset a z) _ _
(cong (λ a → elim2 Cset f a z) p) (cong (λ a → elim2 Cset f a z) q) (squash₂ x y p q) i j
elim3 : {D : ∥ A ∥₂ → ∥ B ∥₂ → ∥ C ∥₂ → Type ℓ}
(Dset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) (z : ∥ C ∥₂) → isSet (D x y z)))
(g : (a : A) (b : B) (c : C) → D ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂)
(x : ∥ A ∥₂) (y : ∥ B ∥₂) (z : ∥ C ∥₂) → D x y z
elim3 Dset g = elim2 (λ _ _ → isSetΠ (λ _ → Dset _ _ _))
(λ a b → elim (λ _ → Dset _ _ _) (g a b))
elim4 : {E : ∥ A ∥₂ → ∥ B ∥₂ → ∥ C ∥₂ → ∥ D ∥₂ → Type ℓ}
(Eset : ((w : ∥ A ∥₂) (x : ∥ B ∥₂) (y : ∥ C ∥₂) (z : ∥ D ∥₂)
→ isSet (E w x y z)))
(g : (a : A) (b : B) (c : C) (d : D) → E ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂ ∣ d ∣₂)
(w : ∥ A ∥₂) (x : ∥ B ∥₂) (y : ∥ C ∥₂) (z : ∥ D ∥₂) → E w x y z
elim4 Eset g = elim3 (λ _ _ _ → isSetΠ λ _ → Eset _ _ _ _)
λ a b c → elim (λ _ → Eset _ _ _ _) (g a b c)
module rec→Gpd {A : Type ℓ} {B : Type ℓ'} (Bgpd : isGroupoid B) (f : A → B)
(congFConst : ∀ (a b : A) (p q : a ≡ b) → cong f p ≡ cong f q) where
data H : Type ℓ where
η : A → H
ε : ∀ (a b : A) → ∥ a ≡ b ∥₁ → η a ≡ η b
δ : ∀ (a b : A) (p : a ≡ b) → ε a b ∣ p ∣₁ ≡ cong η p
gtrunc : isGroupoid H
module Helim {P : H → Type ℓ''} (Pgpd : ∀ h → isGroupoid (P h))
(η* : (a : A) → P (η a))
(ε* : ∀ (a b : A) (∣p∣₁ : ∥ a ≡ b ∥₁)
→ PathP (λ i → P (ε a b ∣p∣₁ i)) (η* a) (η* b))
(δ* : ∀ (a b : A) (p : a ≡ b)
→ PathP (λ i → PathP (λ j → P (δ a b p i j)) (η* a) (η* b))
(ε* a b ∣ p ∣₁) (cong η* p)) where
fun : (h : H) → P h
fun (η a) = η* a
fun (ε a b ∣p∣₁ i) = ε* a b ∣p∣₁ i
fun (δ a b p i j) = δ* a b p i j
fun (gtrunc x y p q α β i j k) = isOfHLevel→isOfHLevelDep 3 Pgpd
(fun x) (fun y)
(cong fun p) (cong fun q)
(cong (cong fun) α) (cong (cong fun) β)
(gtrunc x y p q α β) i j k
module Hrec {C : Type ℓ''} (Cgpd : isGroupoid C)
(η* : A → C)
(ε* : ∀ (a b : A) → ∥ a ≡ b ∥₁ → η* a ≡ η* b)
(δ* : ∀ (a b : A) (p : a ≡ b) → ε* a b ∣ p ∣₁ ≡ cong η* p) where
fun : H → C
fun (η a) = η* a
fun (ε a b ∣p∣₁ i) = ε* a b ∣p∣₁ i
fun (δ a b p i j) = δ* a b p i j
fun (gtrunc x y p q α β i j k) = Cgpd (fun x) (fun y) (cong fun p) (cong fun q)
(cong (cong fun) α) (cong (cong fun) β) i j k
module HelimProp {P : H → Type ℓ''} (Pprop : ∀ h → isProp (P h))
(η* : (a : A) → P (η a)) where
fun : ∀ h → P h
fun = Helim.fun (λ _ → isSet→isGroupoid (isProp→isSet (Pprop _))) η*
(λ a b ∣p∣₁ → isOfHLevel→isOfHLevelDep 1 Pprop _ _ (ε a b ∣p∣₁))
λ a b p → isOfHLevel→isOfHLevelDep 1
{B = λ p → PathP (λ i → P (p i)) (η* a) (η* b)}
(λ _ → isOfHLevelPathP 1 (Pprop _) _ _) _ _ (δ a b p)
module HelimSet {P : H → Type ℓ''} (Pset : ∀ h → isSet (P h))
(η* : ∀ a → P (η a)) where
fun : (h : H) → P h
fun = Helim.fun (λ _ → isSet→isGroupoid (Pset _)) η* ε*
λ a b p → isOfHLevel→isOfHLevelDep 1
{B = λ p → PathP (λ i → P (p i)) (η* a) (η* b)}
(λ _ → isOfHLevelPathP' 1 (Pset _) _ _) _ _ (δ a b p)
where
ε* : (a b : A) (∣p∣₁ : ∥ a ≡ b ∥₁) → PathP (λ i → P (ε a b ∣p∣₁ i)) (η* a) (η* b)
ε* a b = pElim (λ _ → isOfHLevelPathP' 1 (Pset _) (η* a) (η* b))
λ p → subst (λ x → PathP (λ i → P (x i)) (η* a) (η* b))
(sym (δ a b p)) (cong η* p)
localHedbergLemma : {X : Type ℓ''} (P : X → Type ℓ'')
→ (∀ x → isProp (P x))
→ ((x : X) → P x → (y : X) → P y → x ≡ y)
→ (x : X) → P x → (y : X) → isProp (x ≡ y)
localHedbergLemma {X = X} P Pprop P→≡ x px y = isPropRetract
(λ p → subst P p px) (λ py → sym (P→≡ x px x px) ∙ P→≡ x px y py)
isRetract (Pprop y)
where
isRetract : (p : x ≡ y) → (sym (P→≡ x px x px)) ∙ P→≡ x px y (subst P p px) ≡ p
isRetract = J (λ y' p' → (sym (P→≡ x px x px)) ∙ P→≡ x px y' (subst P p' px) ≡ p')
(subst (λ px' → sym (P→≡ x px x px) ∙ P→≡ x px x px' ≡ refl)
(sym (substRefl {B = P} px)) (lCancel (P→≡ x px x px)))
Hset : isSet H
Hset = HelimProp.fun (λ _ → isPropΠ λ _ → isPropIsProp) baseCaseLeft
where
baseCaseLeft : (a₀ : A) (y : H) → isProp (η a₀ ≡ y)
baseCaseLeft a₀ = localHedbergLemma (λ x → Q x .fst) (λ x → Q x .snd) Q→≡ _ ∣ refl ∣₁
where
Q : H → hProp ℓ
Q = HelimSet.fun (λ _ → isSetHProp) λ b → ∥ a₀ ≡ b ∥₁ , isPropPropTrunc
Q→≡ : (x : H) → Q x .fst → (y : H) → Q y .fst → x ≡ y
Q→≡ = HelimSet.fun (λ _ → isSetΠ3 λ _ _ _ → gtrunc _ _)
λ a p → HelimSet.fun (λ _ → isSetΠ λ _ → gtrunc _ _)
λ b q → sym (ε a₀ a p) ∙ ε a₀ b q
fun : ∥ A ∥₂ → B
fun = f₁ ∘ f₂
where
f₁ : H → B
f₁ = Hrec.fun Bgpd f εᶠ λ _ _ _ → refl
where
εᶠ : (a b : A) → ∥ a ≡ b ∥₁ → f a ≡ f b
εᶠ a b = rec→Set (Bgpd _ _) (cong f) λ p q → congFConst a b p q
f₂ : ∥ A ∥₂ → H
f₂ = rec Hset η
map : (A → B) → ∥ A ∥₂ → ∥ B ∥₂
map f = rec squash₂ λ x → ∣ f x ∣₂
map∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(f : A →∙ B) → ∥ A ∥₂∙ →∙ ∥ B ∥₂∙
fst (map∙ f) = map (fst f)
snd (map∙ f) = cong ∣_∣₂ (snd f)
setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B)
setTruncUniversal {B = B} Bset =
isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv)
where
rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f
rinv f i x =
elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x)))
(λ _ → refl) x i
isSetSetTrunc : isSet ∥ A ∥₂
isSetSetTrunc a b p q = squash₂ a b p q
setTruncIdempotentIso : isSet A → Iso ∥ A ∥₂ A
Iso.fun (setTruncIdempotentIso hA) = rec hA (idfun _)
Iso.inv (setTruncIdempotentIso hA) x = ∣ x ∣₂
Iso.rightInv (setTruncIdempotentIso hA) _ = refl
Iso.leftInv (setTruncIdempotentIso hA) = elim (λ _ → isSet→isGroupoid isSetSetTrunc _ _) (λ _ → refl)
setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A
setTruncIdempotent≃ {A = A} hA = isoToEquiv (setTruncIdempotentIso hA)
setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A
setTruncIdempotent hA = ua (setTruncIdempotent≃ hA)
isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂)
isContr→isContrSetTrunc contr = ∣ fst contr ∣₂
, elim (λ _ → isOfHLevelPath 2 (isSetSetTrunc) _ _)
λ a → cong ∣_∣₂ (snd contr a)
setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂
Iso.fun (setTruncIso is) = rec isSetSetTrunc (λ x → ∣ Iso.fun is x ∣₂)
Iso.inv (setTruncIso is) = rec isSetSetTrunc (λ x → ∣ Iso.inv is x ∣₂)
Iso.rightInv (setTruncIso is) =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ a → cong ∣_∣₂ (Iso.rightInv is a)
Iso.leftInv (setTruncIso is) =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ a → cong ∣_∣₂ (Iso.leftInv is a)
setSigmaIso : {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
setSigmaIso {A = A} {B = B} = iso fun funinv sect retr
where
fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
fun = rec isSetSetTrunc λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂}
funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂
funinv = rec isSetSetTrunc (λ {(a , p) → rec isSetSetTrunc (λ p → ∣ a , p ∣₂) p})
sect : section fun funinv
sect = elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂}
(λ p → isOfHLevelPath 2 isSetSetTrunc _ _) (λ _ → refl) p }
retr : retract fun funinv
retr = elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ { _ → refl }
sigmaElim : {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'}
(Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x))
(g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b))
(x : Σ ∥ A ∥₂ B) → C x
sigmaElim {B = B} {C = C} set g (x , y) =
elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isSetΠ λ _ → set _) g x y
sigmaProdElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'}
(Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x))
(g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c))
(x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x
sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) =
elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)}
(λ _ → isSetΠ λ _ → isSetΠ λ _ → set _)
(λ x → elim (λ _ → isSetΠ λ _ → set _) (g x))
x y c
prodElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ}
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) → isSet (C x))
→ ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂))
→ (x : ∥ A ∥₂ × ∥ B ∥₂) → C x
prodElim setC f (a , b) = elim2 (λ x y → setC (x , y)) f a b
prodRec : {C : Type ℓ} → isSet C → (A → B → C) → ∥ A ∥₂ × ∥ B ∥₂ → C
prodRec setC f (a , b) = rec2 setC f a b
prodElim2 : {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ}
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isSet (E x y))
→ ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂))
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y))
prodElim2 isset f = prodElim (λ _ → isSetΠ λ _ → isset _ _)
λ a b → prodElim (λ _ → isset _ _)
λ c d → f a b c d
setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂)
Iso.fun setTruncOfProdIso = rec (isSet× isSetSetTrunc isSetSetTrunc) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ }
Iso.inv setTruncOfProdIso = prodRec isSetSetTrunc λ a b → ∣ a , b ∣₂
Iso.rightInv setTruncOfProdIso =
prodElim (λ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ _ _ → refl
Iso.leftInv setTruncOfProdIso =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ {(a , b) → refl}
IsoSetTruncateSndΣ : {A : Type ℓ} {B : A → Type ℓ'} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
Iso.fun IsoSetTruncateSndΣ = map λ a → (fst a) , ∣ snd a ∣₂
Iso.inv IsoSetTruncateSndΣ = rec isSetSetTrunc (uncurry λ x → map λ b → x , b)
Iso.rightInv IsoSetTruncateSndΣ =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
(uncurry λ a → elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ _ → refl)
Iso.leftInv IsoSetTruncateSndΣ =
elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ _ → refl
PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁
Iso.fun (PathIdTrunc₀Iso {b = b}) p =
transport (λ i → rec {B = TypeOfHLevel _ 1} (isOfHLevelTypeOfHLevel 1)
(λ a → ∥ a ≡ b ∥₁ , squash₁) (p (~ i)) .fst)
∣ refl ∣₁
Iso.inv PathIdTrunc₀Iso = pRec (squash₂ _ _) (cong ∣_∣₂)
Iso.rightInv PathIdTrunc₀Iso _ = squash₁ _ _
Iso.leftInv PathIdTrunc₀Iso _ = squash₂ _ _ _ _
mapFunctorial : {A B C : Type ℓ} (f : A → B) (g : B → C)
→ map g ∘ map f ≡ map (g ∘ f)
mapFunctorial f g =
funExt (elim (λ x → isSetPathImplicit) λ a → refl)