{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.Int where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Data.Int as Int renaming ( ℤ to ℤ ; _+_ to _+ℤ_; _·_ to _·ℤ_; -_ to -ℤ_) open CommRingStr using (0r ; 1r ; _+_ ; _·_ ; -_ ; isCommRing) ℤCommRing : CommRing ℓ-zero fst ℤCommRing = ℤ 0r (snd ℤCommRing) = 0 1r (snd ℤCommRing) = 1 _+_ (snd ℤCommRing) = _+ℤ_ _·_ (snd ℤCommRing) = _·ℤ_ - snd ℤCommRing = -ℤ_ isCommRing (snd ℤCommRing) = isCommRingℤ where abstract isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_ isCommRingℤ = makeIsCommRing isSetℤ Int.+Assoc (λ _ → refl) -Cancel Int.+Comm Int.·Assoc Int.·IdR ·DistR+ Int.·Comm