{-# OPTIONS --safe --lossy-unification #-}
module Cubical.CW.Homology where
open import Cubical.CW.Base
open import Cubical.CW.Properties
open import Cubical.CW.Map
open import Cubical.CW.Homotopy
open import Cubical.CW.ChainComplex
open import Cubical.CW.Approximation
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Data.Nat
open import Cubical.Data.Fin.Inductive.Base
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
open import Cubical.Algebra.ChainComplex
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.SequentialColimit
private
variable
ℓ ℓ' ℓ'' : Level
Hˢᵏᵉˡ→-pre : (C : CWskel ℓ) (D : CWskel ℓ') (m : ℕ)
(f : finCellMap (suc (suc (suc m))) C D)
→ GroupHom (Hˢᵏᵉˡ C m) (Hˢᵏᵉˡ D m)
Hˢᵏᵉˡ→-pre C D m f = finCellMap→HomologyMap m f
private
Hˢᵏᵉˡ→-pre' : (C : CWskel ℓ) (D : CWskel ℓ') (m : ℕ)
→ (f : realise C → realise D)
→ ∥ finCellApprox C D f (suc (suc (suc m))) ∥₁
→ GroupHom (Hˢᵏᵉˡ C m) (Hˢᵏᵉˡ D m)
Hˢᵏᵉˡ→-pre' C D m f =
rec→Set isSetGroupHom
(λ f → Hˢᵏᵉˡ→-pre C D m (f .fst))
main
where
main : 2-Constant (λ f₁ → Hˢᵏᵉˡ→-pre C D m (f₁ .fst))
main f g = PT.rec (isSetGroupHom _ _)
(λ q → finChainHomotopy→HomologyPath _ _
(cellHom-to-ChainHomotopy _ q) flast)
(pathToCellularHomotopy _ (fst f) (fst g)
λ x → funExt⁻ (snd f ∙ sym (snd g)) (fincl flast x))
Hˢᵏᵉˡ→ : {C : CWskel ℓ} {D : CWskel ℓ'} (m : ℕ)
(f : realise C → realise D)
→ GroupHom (Hˢᵏᵉˡ C m) (Hˢᵏᵉˡ D m)
Hˢᵏᵉˡ→ {C = C} {D} m f =
Hˢᵏᵉˡ→-pre' C D m f
(CWmap→finCellMap C D f (suc (suc (suc m))))
Hˢᵏᵉˡ→β : (C : CWskel ℓ) (D : CWskel ℓ') (m : ℕ)
{f : realise C → realise D}
(ϕ : finCellApprox C D f (suc (suc (suc m))))
→ Hˢᵏᵉˡ→ {C = C} {D} m f ≡ Hˢᵏᵉˡ→-pre C D m (ϕ .fst)
Hˢᵏᵉˡ→β C D m {f = f} ϕ =
cong (Hˢᵏᵉˡ→-pre' C D m f) (squash₁ _ ∣ ϕ ∣₁)
Hˢᵏᵉˡ→id : (m : ℕ) {C : CWskel ℓ}
→ Hˢᵏᵉˡ→ {C = C} m (idfun _) ≡ idGroupHom
Hˢᵏᵉˡ→id m {C = C} =
Hˢᵏᵉˡ→β C C m {idfun _} (idFinCellApprox (suc (suc (suc m))))
∙ finCellMap→HomologyMapId _
Hˢᵏᵉˡ→comp : (m : ℕ)
{C : CWskel ℓ} {D : CWskel ℓ'} {E : CWskel ℓ''}
(g : realise D → realise E)
(f : realise C → realise D)
→ Hˢᵏᵉˡ→ m (g ∘ f)
≡ compGroupHom (Hˢᵏᵉˡ→ m f) (Hˢᵏᵉˡ→ m g)
Hˢᵏᵉˡ→comp m {C = C} {D = D} {E = E} g f =
PT.rec2 (isSetGroupHom _ _)
main
(CWmap→finCellMap C D f (suc (suc (suc m))))
(CWmap→finCellMap D E g (suc (suc (suc m))))
where
module _ (F : finCellApprox C D f (suc (suc (suc m))))
(G : finCellApprox D E g (suc (suc (suc m))))
where
comps : finCellApprox C E (g ∘ f) (suc (suc (suc m)))
comps = compFinCellApprox _ {g = g} {f} G F
eq1 : Hˢᵏᵉˡ→ m (g ∘ f)
≡ Hˢᵏᵉˡ→-pre C E m (composeFinCellMap _ (fst G) (fst F))
eq1 = Hˢᵏᵉˡ→β C E m {g ∘ f} comps
eq2 : compGroupHom (Hˢᵏᵉˡ→ m f) (Hˢᵏᵉˡ→ m g)
≡ compGroupHom (Hˢᵏᵉˡ→-pre C D m (fst F)) (Hˢᵏᵉˡ→-pre D E m (fst G))
eq2 = cong₂ compGroupHom (Hˢᵏᵉˡ→β C D m {f = f} F) (Hˢᵏᵉˡ→β D E m {f = g} G)
main : Hˢᵏᵉˡ→ m (g ∘ f) ≡ compGroupHom (Hˢᵏᵉˡ→ m f) (Hˢᵏᵉˡ→ m g)
main = eq1 ∙∙ finCellMap→HomologyMapComp _ _ _ ∙∙ sym eq2
Hˢᵏᵉˡ→Iso : {C : CWskel ℓ} {D : CWskel ℓ'} (m : ℕ)
(e : realise C ≃ realise D) → GroupIso (Hˢᵏᵉˡ C m) (Hˢᵏᵉˡ D m)
Iso.fun (fst (Hˢᵏᵉˡ→Iso m e)) = fst (Hˢᵏᵉˡ→ m (fst e))
Iso.inv (fst (Hˢᵏᵉˡ→Iso m e)) = fst (Hˢᵏᵉˡ→ m (invEq e))
Iso.rightInv (fst (Hˢᵏᵉˡ→Iso m e)) =
funExt⁻ (cong fst (sym (Hˢᵏᵉˡ→comp m (fst e) (invEq e))
∙∙ cong (Hˢᵏᵉˡ→ m) (funExt (secEq e))
∙∙ Hˢᵏᵉˡ→id m))
Iso.leftInv (fst (Hˢᵏᵉˡ→Iso m e)) =
funExt⁻ (cong fst (sym (Hˢᵏᵉˡ→comp m (invEq e) (fst e))
∙∙ cong (Hˢᵏᵉˡ→ m) (funExt (retEq e))
∙∙ Hˢᵏᵉˡ→id m))
snd (Hˢᵏᵉˡ→Iso m e) = snd (Hˢᵏᵉˡ→ m (fst e))
Hˢᵏᵉˡ→Equiv : {C : CWskel ℓ} {D : CWskel ℓ'} (m : ℕ)
(e : realise C ≃ realise D) → GroupEquiv (Hˢᵏᵉˡ C m) (Hˢᵏᵉˡ D m)
Hˢᵏᵉˡ→Equiv m e = GroupIso→GroupEquiv (Hˢᵏᵉˡ→Iso m e)
Hᶜʷ : ∀ (C : CW ℓ) (n : ℕ) → Group₀
Hᶜʷ (C , CWstr) n =
PropTrunc→Group
(λ Cskel → Hˢᵏᵉˡ (Cskel .fst) n)
(λ Cskel Dskel
→ Hˢᵏᵉˡ→Equiv n (compEquiv (invEquiv (snd Cskel)) (snd Dskel)))
coh
CWstr
where
coh : (Cskel Dskel Eskel : isCW C) (t : fst (Hˢᵏᵉˡ (Cskel .fst) n))
→ fst (fst (Hˢᵏᵉˡ→Equiv n (compEquiv (invEquiv (snd Dskel)) (snd Eskel))))
(fst (fst (Hˢᵏᵉˡ→Equiv n (compEquiv (invEquiv (snd Cskel)) (snd Dskel)))) t)
≡ fst (fst (Hˢᵏᵉˡ→Equiv n (compEquiv (invEquiv (snd Cskel)) (snd Eskel)))) t
coh (C' , e) (D , f) (E , h) =
funExt⁻ (cong fst
(sym (Hˢᵏᵉˡ→comp n (fst (compEquiv (invEquiv f) h))
(fst (compEquiv (invEquiv e) f)))
∙ cong (Hˢᵏᵉˡ→ n) (funExt λ x → cong (fst h) (retEq f _))))
private
module _ {C : Type ℓ} {D : Type ℓ'} (f : C → D) (n : ℕ) where
right : (cwC : isCW C) (cwD1 : isCW D) (cwD2 : isCW D)
→ PathP (λ i → GroupHom (Hᶜʷ (C , ∣ cwC ∣₁) n)
(Hᶜʷ (D , squash₁ ∣ cwD1 ∣₁ ∣ cwD2 ∣₁ i) n))
(Hˢᵏᵉˡ→ n (λ x → fst (snd cwD1) (f (invEq (snd cwC) x))))
(Hˢᵏᵉˡ→ n (λ x → fst (snd cwD2) (f (invEq (snd cwC) x))))
right cwC cwD1 cwD2 =
PathPGroupHomₗ _
(cong (Hˢᵏᵉˡ→ n) (funExt (λ s
→ cong (fst (snd cwD2)) (sym (retEq (snd cwD1) _))))
∙ Hˢᵏᵉˡ→comp n _ _)
left : (cwC1 : isCW C) (cwC2 : isCW C) (cwD : isCW D)
→ PathP (λ i → GroupHom (Hᶜʷ (C , squash₁ ∣ cwC1 ∣₁ ∣ cwC2 ∣₁ i) n)
(Hᶜʷ (D , ∣ cwD ∣₁) n))
(Hˢᵏᵉˡ→ n (λ x → fst (snd cwD) (f (invEq (snd cwC1) x))))
(Hˢᵏᵉˡ→ n (λ x → fst (snd cwD) (f (invEq (snd cwC2) x))))
left cwC1 cwC2 cwD =
PathPGroupHomᵣ (Hˢᵏᵉˡ→Equiv n (compEquiv (invEquiv (snd cwC1)) (snd cwC2)))
(sym (Hˢᵏᵉˡ→comp n (λ x → fst (snd cwD) (f (invEq (snd cwC2) x)))
(compEquiv (invEquiv (snd cwC1)) (snd cwC2) .fst))
∙ cong (Hˢᵏᵉˡ→ n) (funExt (λ x
→ cong (fst (snd cwD) ∘ f)
(retEq (snd cwC2) _))))
left-right : (x y : isCW C) (v w : isCW D) →
SquareP
(λ i j →
GroupHom (Hᶜʷ (C , squash₁ ∣ x ∣₁ ∣ y ∣₁ i) n)
(Hᶜʷ (D , squash₁ ∣ v ∣₁ ∣ w ∣₁ j) n))
(right x v w) (right y v w) (left x y v) (left x y w)
left-right _ _ _ _ = isSet→SquareP
(λ _ _ → isSetGroupHom) _ _ _ _
Hᶜʷ→pre : (cwC : ∥ isCW C ∥₁) (cwD : ∥ isCW D ∥₁)
→ GroupHom (Hᶜʷ (C , cwC) n) (Hᶜʷ (D , cwD) n)
Hᶜʷ→pre =
elim2→Set (λ _ _ → isSetGroupHom)
(λ cwC cwD → Hˢᵏᵉˡ→ n (fst (snd cwD) ∘ f ∘ invEq (snd cwC)))
left right
(λ _ _ _ _ → isSet→SquareP
(λ _ _ → isSetGroupHom) _ _ _ _)
Hᶜʷ→ : {C : CW ℓ} {D : CW ℓ'} (n : ℕ) (f : C →ᶜʷ D)
→ GroupHom (Hᶜʷ C n) (Hᶜʷ D n)
Hᶜʷ→ {C = C , cwC} {D = D , cwD} n f = Hᶜʷ→pre f n cwC cwD
Hᶜʷ→id : {C : CW ℓ} (n : ℕ)
→ Hᶜʷ→ {C = C} {C} n (idfun (fst C))
≡ idGroupHom
Hᶜʷ→id {C = C , cwC} n =
PT.elim {P = λ cwC
→ Hᶜʷ→ {C = C , cwC} {C , cwC} n (idfun C) ≡ idGroupHom}
(λ _ → isSetGroupHom _ _)
(λ cwC* → cong (Hˢᵏᵉˡ→ n) (funExt (secEq (snd cwC*)))
∙ Hˢᵏᵉˡ→id n) cwC
Hᶜʷ→comp : {C : CW ℓ} {D : CW ℓ'} {E : CW ℓ''} (n : ℕ)
(g : D →ᶜʷ E) (f : C →ᶜʷ D)
→ Hᶜʷ→ {C = C} {E} n (g ∘ f)
≡ compGroupHom (Hᶜʷ→ {C = C} {D} n f) (Hᶜʷ→ {C = D} {E} n g)
Hᶜʷ→comp {C = C , cwC} {D = D , cwD} {E = E , cwE} n g f =
PT.elim3 {P = λ cwC cwD cwE
→ Hᶜʷ→ {C = C , cwC} {E , cwE} n (g ∘ f)
≡ compGroupHom (Hᶜʷ→ {C = C , cwC} {D , cwD} n f)
(Hᶜʷ→ {C = D , cwD} {E , cwE} n g)}
(λ _ _ _ → isSetGroupHom _ _)
(λ cwC cwD cwE
→ cong (Hˢᵏᵉˡ→ n) (funExt (λ x → cong (fst (snd cwE) ∘ g)
(sym (retEq (snd cwD) _))))
∙ Hˢᵏᵉˡ→comp n _ _)
cwC cwD cwE
Hᶜʷ→Iso : {C : CW ℓ} {D : CW ℓ'} (m : ℕ)
(e : fst C ≃ fst D) → GroupIso (Hᶜʷ C m) (Hᶜʷ D m)
Iso.fun (fst (Hᶜʷ→Iso m e)) = fst (Hᶜʷ→ m (fst e))
Iso.inv (fst (Hᶜʷ→Iso m e)) = fst (Hᶜʷ→ m (invEq e))
Iso.rightInv (fst (Hᶜʷ→Iso m e)) =
funExt⁻ (cong fst (sym (Hᶜʷ→comp m (fst e) (invEq e))
∙∙ cong (Hᶜʷ→ m) (funExt (secEq e))
∙∙ Hᶜʷ→id m))
Iso.leftInv (fst (Hᶜʷ→Iso m e)) =
funExt⁻ (cong fst (sym (Hᶜʷ→comp m (invEq e) (fst e))
∙∙ cong (Hᶜʷ→ m) (funExt (retEq e))
∙∙ Hᶜʷ→id m))
snd (Hᶜʷ→Iso m e) = snd (Hᶜʷ→ m (fst e))
Hᶜʷ→Equiv : {C : CW ℓ} {D : CW ℓ'} (m : ℕ)
(e : fst C ≃ fst D) → GroupEquiv (Hᶜʷ C m) (Hᶜʷ D m)
Hᶜʷ→Equiv m e = GroupIso→GroupEquiv (Hᶜʷ→Iso m e)