{-# OPTIONS --safe #-} module Cubical.Relation.Binary.Order.Loset.Properties where open import Cubical.Data.Sum as ⊎ open import Cubical.Data.Empty as ⊥ open import Cubical.Foundations.Prelude open import Cubical.Functions.Embedding open import Cubical.HITs.PropositionalTruncation as ∥₁ open import Cubical.Relation.Binary.Base open import Cubical.Relation.Binary.Order.Apartness.Base open import Cubical.Relation.Binary.Order.Toset.Base open import Cubical.Relation.Binary.Order.StrictPoset.Base open import Cubical.Relation.Binary.Order.Loset.Base open import Cubical.Relation.Nullary private variable ℓ ℓ' ℓ'' : Level module _ {A : Type ℓ} {R : Rel A A ℓ'} where open BinaryRelation isLoset→isStrictPoset : IsLoset R → IsStrictPoset R isLoset→isStrictPoset loset = isstrictposet (IsLoset.is-set loset) (IsLoset.is-prop-valued loset) (IsLoset.is-irrefl loset) (IsLoset.is-trans loset) (IsLoset.is-asym loset) private transrefl : isTrans R → isTrans (ReflClosure R) transrefl trans a b c (inl Rab) (inl Rbc) = inl (trans a b c Rab Rbc) transrefl trans a b c (inl Rab) (inr b≡c) = inl (subst (R a) b≡c Rab) transrefl trans a b c (inr a≡b) (inl Rbc) = inl (subst (λ z → R z c) (sym a≡b) Rbc) transrefl trans a b c (inr a≡b) (inr b≡c) = inr (a≡b ∙ b≡c) antisym : isIrrefl R → isTrans R → isAntisym (ReflClosure R) antisym irr trans a b (inl Rab) (inl Rba) = ⊥.rec (irr a (trans a b a Rab Rba)) antisym irr trans a b (inl _) (inr b≡a) = sym b≡a antisym irr trans a b (inr a≡b) _ = a≡b isLoset→isTosetReflClosure : Discrete A → IsLoset R → IsToset (ReflClosure R) isLoset→isTosetReflClosure disc loset = istoset (IsLoset.is-set loset) (λ a b → isProp⊎ (IsLoset.is-prop-valued loset a b) (IsLoset.is-set loset a b) λ Rab a≡b → IsLoset.is-irrefl loset a (subst (R a) (sym a≡b) Rab)) (isReflReflClosure R) (transrefl (IsLoset.is-trans loset)) (antisym (IsLoset.is-irrefl loset) (IsLoset.is-trans loset)) λ a b → decRec (λ a≡b → ∣ inl (inr a≡b) ∣₁) (λ ¬a≡b → ∥₁.map (⊎.map (λ Rab → inl Rab) λ Rba → inl Rba) (IsLoset.is-connected loset a b ¬a≡b)) (disc a b) isLosetInduced : IsLoset R → (B : Type ℓ'') → (f : B ↪ A) → IsLoset (InducedRelation R (B , f)) isLosetInduced los B (f , emb) = isloset (Embedding-into-isSet→isSet (f , emb) (IsLoset.is-set los)) (λ a b → IsLoset.is-prop-valued los (f a) (f b)) (λ a → IsLoset.is-irrefl los (f a)) (λ a b c → IsLoset.is-trans los (f a) (f b) (f c)) (λ a b → IsLoset.is-asym los (f a) (f b)) (λ a b c → IsLoset.is-weakly-linear los (f a) (f b) (f c)) λ a b ¬a≡b → IsLoset.is-connected los (f a) (f b) λ fa≡fb → ¬a≡b (isEmbedding→Inj emb a b fa≡fb) Loset→StrictPoset : Loset ℓ ℓ' → StrictPoset ℓ ℓ' Loset→StrictPoset (_ , los) = _ , strictposetstr (LosetStr._<_ los) (isLoset→isStrictPoset (LosetStr.isLoset los)) Loset→Toset : (los : Loset ℓ ℓ') → Discrete (fst los) → Toset ℓ (ℓ-max ℓ ℓ') Loset→Toset (_ , los) disc = _ , tosetstr (BinaryRelation.ReflClosure (LosetStr._<_ los)) (isLoset→isTosetReflClosure disc (LosetStr.isLoset los))