module Cubical.Relation.Binary.Order.Loset.Properties where
open import Cubical.Data.Sum as ⊎
open import Cubical.Data.Empty as ⊥
open import Cubical.Foundations.Prelude
open import Cubical.Functions.Embedding
open import Cubical.HITs.PropositionalTruncation as ∥₁
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.Binary.Order.Apartness.Base
open import Cubical.Relation.Binary.Order.Toset
open import Cubical.Relation.Binary.Order.Poset.Base
open import Cubical.Relation.Binary.Order.StrictOrder.Base
open import Cubical.Relation.Binary.Order.Loset.Base
open import Cubical.Relation.Nullary
private
variable
ℓ ℓ' ℓ'' : Level
module _
{A : Type ℓ}
{R : Rel A A ℓ'}
where
open BinaryRelation
isLoset→isStrictOrder : IsLoset R → IsStrictOrder R
isLoset→isStrictOrder loset = isstrictorder
(IsLoset.is-set loset)
(IsLoset.is-prop-valued loset)
(IsLoset.is-irrefl loset)
(IsLoset.is-trans loset)
(IsLoset.is-asym loset)
(IsLoset.is-weakly-linear loset)
private
transrefl : isTrans R → isTrans (ReflClosure R)
transrefl trans a b c (inl Rab) (inl Rbc) = inl (trans a b c Rab Rbc)
transrefl trans a b c (inl Rab) (inr b≡c) = inl (subst (R a) b≡c Rab)
transrefl trans a b c (inr a≡b) (inl Rbc) = inl (subst (λ z → R z c) (sym a≡b) Rbc)
transrefl trans a b c (inr a≡b) (inr b≡c) = inr (a≡b ∙ b≡c)
antisym : isIrrefl R → isTrans R → isAntisym (ReflClosure R)
antisym irr trans a b (inl Rab) (inl Rba) = ⊥.rec (irr a (trans a b a Rab Rba))
antisym irr trans a b (inl _) (inr b≡a) = sym b≡a
antisym irr trans a b (inr a≡b) _ = a≡b
isLoset→isTosetReflClosure : IsLoset R → isDecidable R → IsToset (ReflClosure R)
isLoset→isTosetReflClosure loset dec
= istoset (IsLoset.is-set loset)
(λ a b → isProp⊎ (IsLoset.is-prop-valued loset a b)
(IsLoset.is-set loset a b)
λ Rab a≡b
→ IsLoset.is-irrefl loset a (subst (R a)
(sym a≡b) Rab))
(isReflReflClosure R)
(transrefl (IsLoset.is-trans loset))
(antisym (IsLoset.is-irrefl loset)
(IsLoset.is-trans loset))
λ a b → decRec (λ Rab → ∣ inl (inl Rab) ∣₁)
(λ ¬Rab → decRec (λ Rba → ∣ inr (inl Rba) ∣₁)
(λ ¬Rba → ∣ inl (inr (IsLoset.is-connected loset a b
(¬Rab , ¬Rba))) ∣₁)
(dec b a))
(dec a b)
isLosetDecidable→isTosetDecidable : IsLoset R → isDecidable R → isDecidable (ReflClosure R)
isLosetDecidable→isTosetDecidable los dec a b with dec a b
... | yes Rab = yes (inl Rab)
... | no ¬Rab with dec b a
... | yes Rba = no (⊎.rec ¬Rab λ a≡b → IsLoset.is-irrefl los b (subst (R b) a≡b Rba))
... | no ¬Rba = yes (inr (IsLoset.is-connected los a b (¬Rab , ¬Rba)))
isLosetDecidable→Discrete : IsLoset R → isDecidable R → Discrete A
isLosetDecidable→Discrete los dec = isTosetDecidable→Discrete
(isLoset→isTosetReflClosure los dec)
(isLosetDecidable→isTosetDecidable los dec)
isLoset→isPosetNegationRel : IsLoset R → IsPoset (NegationRel R)
isLoset→isPosetNegationRel loset
= isposet (IsLoset.is-set loset)
(λ a b → isProp¬ (R a b))
(IsLoset.is-irrefl loset)
(λ a b c ¬Rab ¬Rbc Rac → ∥₁.rec isProp⊥ (⊎.rec ¬Rab ¬Rbc)
(IsLoset.is-weakly-linear loset a c b Rac))
λ a b ¬Rab ¬Rba → IsLoset.is-connected loset a b (¬Rab , ¬Rba)
isLosetInduced : IsLoset R → (B : Type ℓ'') → (f : B ↪ A)
→ IsLoset (InducedRelation R (B , f))
isLosetInduced los B (f , emb)
= isloset (Embedding-into-isSet→isSet (f , emb) (IsLoset.is-set los))
(λ a b → IsLoset.is-prop-valued los (f a) (f b))
(λ a → IsLoset.is-irrefl los (f a))
(λ a b c → IsLoset.is-trans los (f a) (f b) (f c))
(λ a b → IsLoset.is-asym los (f a) (f b))
(λ a b c → IsLoset.is-weakly-linear los (f a) (f b) (f c))
λ a b ineq → isEmbedding→Inj emb a b
(IsLoset.is-connected los (f a) (f b) ineq)
isLosetDual : IsLoset R → IsLoset (Dual R)
isLosetDual los
= isloset (IsLoset.is-set los)
(λ a b → IsLoset.is-prop-valued los b a)
(IsLoset.is-irrefl los)
(λ a b c Rab Rbc → IsLoset.is-trans los c b a Rbc Rab)
(λ a b → IsLoset.is-asym los b a)
(λ a b c Rba → ∥₁.map (⊎.rec inr inl)
(IsLoset.is-weakly-linear los b a c Rba))
λ { a b (¬Rba , ¬Rab) → IsLoset.is-connected los a b (¬Rab , ¬Rba) }
Loset→StrictOrder : Loset ℓ ℓ' → StrictOrder ℓ ℓ'
Loset→StrictOrder (_ , los)
= strictorder _ (LosetStr._<_ los)
(isLoset→isStrictOrder (LosetStr.isLoset los))
Loset→Toset : (los : Loset ℓ ℓ')
→ BinaryRelation.isDecidable (LosetStr._<_ (snd los))
→ Toset ℓ (ℓ-max ℓ ℓ')
Loset→Toset (_ , los) dec
= toset _ (BinaryRelation.ReflClosure (LosetStr._<_ los))
(isLoset→isTosetReflClosure (LosetStr.isLoset los) dec)
DualLoset : Loset ℓ ℓ' → Loset ℓ ℓ'
DualLoset (_ , los)
= loset _ (BinaryRelation.Dual (LosetStr._<_ los))
(isLosetDual (LosetStr.isLoset los))