{-# OPTIONS --safe #-}
module Cubical.Relation.Binary.Order.StrictOrder.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Reflection.RecordEquiv
open import Cubical.Reflection.StrictEquiv
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.Nullary.Properties
open Iso
open BinaryRelation
private
variable
ℓ ℓ' ℓ'' ℓ₀ ℓ₀' ℓ₁ ℓ₁' : Level
record IsStrictOrder {A : Type ℓ} (_<_ : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where
no-eta-equality
constructor isstrictorder
field
is-set : isSet A
is-prop-valued : isPropValued _<_
is-irrefl : isIrrefl _<_
is-trans : isTrans _<_
is-asym : isAsym _<_
is-weakly-linear : isWeaklyLinear _<_
unquoteDecl IsStrictOrderIsoΣ = declareRecordIsoΣ IsStrictOrderIsoΣ (quote IsStrictOrder)
record StrictOrderStr (ℓ' : Level) (A : Type ℓ) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where
constructor strictorderstr
field
_<_ : A → A → Type ℓ'
isStrictOrder : IsStrictOrder _<_
infixl 7 _<_
open IsStrictOrder isStrictOrder public
StrictOrder : ∀ ℓ ℓ' → Type (ℓ-max (ℓ-suc ℓ) (ℓ-suc ℓ'))
StrictOrder ℓ ℓ' = TypeWithStr ℓ (StrictOrderStr ℓ')
strictorder : (A : Type ℓ) → (_<_ : Rel A A ℓ') → IsStrictOrder _<_ → StrictOrder ℓ ℓ'
strictorder A _<_ strict = A , (strictorderstr _<_ strict)
record IsStrictOrderEquiv {A : Type ℓ₀} {B : Type ℓ₁}
(M : StrictOrderStr ℓ₀' A) (e : A ≃ B) (N : StrictOrderStr ℓ₁' B)
: Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') ℓ₁')
where
constructor
isstrictorderequiv
private
module M = StrictOrderStr M
module N = StrictOrderStr N
field
pres< : (x y : A) → x M.< y ≃ equivFun e x N.< equivFun e y
StrictOrderEquiv : (M : StrictOrder ℓ₀ ℓ₀') (M : StrictOrder ℓ₁ ℓ₁') → Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁'))
StrictOrderEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsStrictOrderEquiv (M .snd) e (N .snd)
isPropIsStrictOrder : {A : Type ℓ} (_<_ : A → A → Type ℓ') → isProp (IsStrictOrder _<_)
isPropIsStrictOrder _<_ = isOfHLevelRetractFromIso 1 IsStrictOrderIsoΣ
(isPropΣ isPropIsSet
λ isSetA → isPropΣ (isPropΠ2 (λ _ _ → isPropIsProp))
λ isPropValued< → isProp×3 (isPropΠ (λ x → isProp¬ (x < x)))
(isPropΠ5 (λ _ _ _ _ _ → isPropValued< _ _))
(isPropΠ3 (λ x y _ → isProp¬ (y < x)))
(isPropΠ4 λ _ _ _ _ → squash₁))
𝒮ᴰ-StrictOrder : DUARel (𝒮-Univ ℓ) (StrictOrderStr ℓ') (ℓ-max ℓ ℓ')
𝒮ᴰ-StrictOrder =
𝒮ᴰ-Record (𝒮-Univ _) IsStrictOrderEquiv
(fields:
data[ _<_ ∣ autoDUARel _ _ ∣ pres< ]
prop[ isStrictOrder ∣ (λ _ _ → isPropIsStrictOrder _) ])
where
open StrictOrderStr
open IsStrictOrder
open IsStrictOrderEquiv
StrictOrderPath : (M N : StrictOrder ℓ ℓ') → StrictOrderEquiv M N ≃ (M ≡ N)
StrictOrderPath = ∫ 𝒮ᴰ-StrictOrder .UARel.ua
module _ {P : StrictOrder ℓ₀ ℓ₀'} {S : StrictOrder ℓ₁ ℓ₁'} (e : ⟨ P ⟩ ≃ ⟨ S ⟩) where
private
module P = StrictOrderStr (P .snd)
module S = StrictOrderStr (S .snd)
module _ (isMon : ∀ x y → x P.< y → equivFun e x S.< equivFun e y)
(isMonInv : ∀ x y → x S.< y → invEq e x P.< invEq e y) where
open IsStrictOrderEquiv
open IsStrictOrder
makeIsStrictOrderEquiv : IsStrictOrderEquiv (P .snd) e (S .snd)
pres< makeIsStrictOrderEquiv x y = propBiimpl→Equiv (P.isStrictOrder .is-prop-valued _ _)
(S.isStrictOrder .is-prop-valued _ _)
(isMon _ _) (isMonInv' _ _)
where
isMonInv' : ∀ x y → equivFun e x S.< equivFun e y → x P.< y
isMonInv' x y ex<ey = transport (λ i → retEq e x i P.< retEq e y i) (isMonInv _ _ ex<ey)