Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Membership.Propositional.Properties where
open import Algebra.Core using (Op₂)
open import Algebra.Definitions using (Selective)
open import Data.Fin.Base using (Fin)
open import Data.List.Base as List
open import Data.List.Effectful using (monad)
open import Data.List.Membership.Propositional
using (_∈_; _∉_; mapWith∈; _≢∈_)
import Data.List.Membership.Setoid.Properties as Membership
open import Data.List.Relation.Binary.Equality.Propositional
using (_≋_; ≡⇒≋; ≋⇒≡)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Relation.Unary.Any.Properties
using (map↔; concat↔; >>=↔; ⊛↔; Any-cong; ⊗↔′; ¬Any[])
open import Data.Nat.Base using (ℕ; suc; s≤s; _≤_; _<_; _≰_)
open import Data.Nat.Properties
using (suc-injective; m≤n⇒m≤1+n; _≤?_; <⇒≢; ≰⇒>)
open import Data.Product.Base using (∃; ∃₂; _×_; _,_)
open import Data.Product.Properties using (×-≡,≡↔≡)
open import Data.Product.Function.NonDependent.Propositional using (_×-cong_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Effect.Monad using (RawMonad)
open import Function.Base using (_∘_; _∘′_; _$_; id; flip; _⟨_⟩_)
open import Function.Definitions using (Injective)
import Function.Related.Propositional as Related
open import Function.Bundles using (_↔_; _↣_; Injection)
open import Function.Related.TypeIsomorphisms using (×-comm; ∃∃↔∃∃)
open import Function.Construct.Identity using (↔-id)
open import Level using (Level)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Definitions as Binary hiding (Decidable)
open import Relation.Binary.PropositionalEquality.Core as ≡
using (_≡_; _≢_; refl; sym; trans; cong; cong₂; resp; _≗_)
open import Relation.Binary.PropositionalEquality.Properties as ≡ using (setoid)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
open import Relation.Nullary.Decidable.Core
using (Dec; yes; no; ¬¬-excluded-middle)
open import Relation.Nullary.Negation.Core using (¬_; contradiction)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Unary using (_⟨×⟩_; Decidable)
private
open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ})
variable
ℓ : Level
A B C : Set ℓ
open import Data.List.Membership.Propositional.Properties.Core public
∈-resp-≋ : ∀ {x : A} → (x ∈_) Respects _≋_
∈-resp-≋ = Membership.∈-resp-≋ (≡.setoid _)
∉-resp-≋ : ∀ {x : A} → (x ∉_) Respects _≋_
∉-resp-≋ = Membership.∉-resp-≋ (≡.setoid _)
mapWith∈-cong : ∀ (xs : List A) → (f g : ∀ {x} → x ∈ xs → B) →
(∀ {x} → (x∈xs : x ∈ xs) → f x∈xs ≡ g x∈xs) →
mapWith∈ xs f ≡ mapWith∈ xs g
mapWith∈-cong [] f g cong = refl
mapWith∈-cong (x ∷ xs) f g cong = cong₂ _∷_ (cong (here refl))
(mapWith∈-cong xs (f ∘ there) (g ∘ there) (cong ∘ there))
mapWith∈≗map : ∀ (f : A → B) xs → mapWith∈ xs (λ {x} _ → f x) ≡ map f xs
mapWith∈≗map f xs =
≋⇒≡ (Membership.mapWith∈≗map (≡.setoid _) (≡.setoid _) f xs)
mapWith∈-id : (xs : List A) → mapWith∈ xs (λ {x} _ → x) ≡ xs
mapWith∈-id = Membership.mapWith∈-id (≡.setoid _)
map-mapWith∈ : (xs : List A) (f : ∀ {x} → x ∈ xs → B) (g : B → C) →
map g (mapWith∈ xs f) ≡ mapWith∈ xs (g ∘′ f)
map-mapWith∈ = Membership.map-mapWith∈ (≡.setoid _)
module _ (f : A → B) where
∈-map⁺ : ∀ {x xs} → x ∈ xs → f x ∈ map f xs
∈-map⁺ = Membership.∈-map⁺ (≡.setoid A) (≡.setoid B) (cong f)
∈-map⁻ : ∀ {y xs} → y ∈ map f xs → ∃ λ x → x ∈ xs × y ≡ f x
∈-map⁻ = Membership.∈-map⁻ (≡.setoid A) (≡.setoid B)
map-∈↔ : ∀ {y xs} → (∃ λ x → x ∈ xs × y ≡ f x) ↔ y ∈ map f xs
map-∈↔ {y} {xs} =
(∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Any↔ ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ ⟩
y ∈ List.map f xs ∎
where open Related.EquationalReasoning
module _ {v : A} where
∈-++⁺ˡ : ∀ {xs ys} → v ∈ xs → v ∈ xs ++ ys
∈-++⁺ˡ = Membership.∈-++⁺ˡ (≡.setoid A)
∈-++⁺ʳ : ∀ xs {ys} → v ∈ ys → v ∈ xs ++ ys
∈-++⁺ʳ = Membership.∈-++⁺ʳ (≡.setoid A)
∈-++⁻ : ∀ xs {ys} → v ∈ xs ++ ys → (v ∈ xs) ⊎ (v ∈ ys)
∈-++⁻ = Membership.∈-++⁻ (≡.setoid A)
∈-insert : ∀ xs {ys} → v ∈ xs ++ [ v ] ++ ys
∈-insert xs = Membership.∈-insert (≡.setoid A) xs refl
∈-∃++ : ∀ {xs} → v ∈ xs → ∃₂ λ ys zs → xs ≡ ys ++ [ v ] ++ zs
∈-∃++ v∈xs
with ys , zs , _ , refl , eq ← Membership.∈-∃++ (≡.setoid A) v∈xs
= ys , zs , ≋⇒≡ eq
module _ {v : A} where
∈-concat⁺ : ∀ {xss} → Any (v ∈_) xss → v ∈ concat xss
∈-concat⁺ = Membership.∈-concat⁺ (≡.setoid A)
∈-concat⁻ : ∀ xss → v ∈ concat xss → Any (v ∈_) xss
∈-concat⁻ = Membership.∈-concat⁻ (≡.setoid A)
∈-concat⁺′ : ∀ {vs xss} → v ∈ vs → vs ∈ xss → v ∈ concat xss
∈-concat⁺′ v∈vs vs∈xss =
Membership.∈-concat⁺′ (≡.setoid A) v∈vs (Any.map ≡⇒≋ vs∈xss)
∈-concat⁻′ : ∀ xss → v ∈ concat xss → ∃ λ xs → v ∈ xs × xs ∈ xss
∈-concat⁻′ xss v∈c =
let xs , v∈xs , xs∈xss = Membership.∈-concat⁻′ (≡.setoid A) xss v∈c
in xs , v∈xs , Any.map ≋⇒≡ xs∈xss
concat-∈↔ : ∀ {xss : List (List A)} →
(∃ λ xs → v ∈ xs × xs ∈ xss) ↔ v ∈ concat xss
concat-∈↔ {xss} =
(∃ λ xs → v ∈ xs × xs ∈ xss) ↔⟨ Σ.cong (↔-id _) $ ×-comm _ _ ⟩
(∃ λ xs → xs ∈ xss × v ∈ xs) ↔⟨ Any↔ ⟩
Any (Any (v ≡_)) xss ↔⟨ concat↔ ⟩
v ∈ concat xss ∎
where open Related.EquationalReasoning
module _ (f : A → B → C) where
∈-cartesianProductWith⁺ : ∀ {xs ys a b} → a ∈ xs → b ∈ ys →
f a b ∈ cartesianProductWith f xs ys
∈-cartesianProductWith⁺ = Membership.∈-cartesianProductWith⁺
(≡.setoid A) (≡.setoid B) (≡.setoid C) (cong₂ f)
∈-cartesianProductWith⁻ : ∀ xs ys {v} → v ∈ cartesianProductWith f xs ys →
∃₂ λ a b → a ∈ xs × b ∈ ys × v ≡ f a b
∈-cartesianProductWith⁻ = Membership.∈-cartesianProductWith⁻
(≡.setoid A) (≡.setoid B) (≡.setoid C) f
∈-cartesianProduct⁺ : ∀ {x : A} {y : B} {xs ys} → x ∈ xs → y ∈ ys →
(x , y) ∈ cartesianProduct xs ys
∈-cartesianProduct⁺ = ∈-cartesianProductWith⁺ _,_
∈-cartesianProduct⁻ : ∀ xs ys {xy@(x , y) : A × B} →
xy ∈ cartesianProduct xs ys → x ∈ xs × y ∈ ys
∈-cartesianProduct⁻ xs ys xy∈p[xs,ys]
with _ , _ , x∈xs , y∈ys , refl ← ∈-cartesianProductWith⁻ _,_ xs ys xy∈p[xs,ys]
= x∈xs , y∈ys
module _ (f : ℕ → A) where
∈-applyUpTo⁺ : ∀ {i n} → i < n → f i ∈ applyUpTo f n
∈-applyUpTo⁺ = Membership.∈-applyUpTo⁺ (≡.setoid _) f
∈-applyUpTo⁻ : ∀ {v n} → v ∈ applyUpTo f n →
∃ λ i → i < n × v ≡ f i
∈-applyUpTo⁻ = Membership.∈-applyUpTo⁻ (≡.setoid _) f
∈-upTo⁺ : ∀ {n i} → i < n → i ∈ upTo n
∈-upTo⁺ = ∈-applyUpTo⁺ id
∈-upTo⁻ : ∀ {n i} → i ∈ upTo n → i < n
∈-upTo⁻ p with _ , i<n , refl ← ∈-applyUpTo⁻ id p = i<n
module _ (f : ℕ → A) where
∈-applyDownFrom⁺ : ∀ {i n} → i < n → f i ∈ applyDownFrom f n
∈-applyDownFrom⁺ = Membership.∈-applyDownFrom⁺ (≡.setoid _) f
∈-applyDownFrom⁻ : ∀ {v n} → v ∈ applyDownFrom f n →
∃ λ i → i < n × v ≡ f i
∈-applyDownFrom⁻ = Membership.∈-applyDownFrom⁻ (≡.setoid _) f
∈-downFrom⁺ : ∀ {n i} → i < n → i ∈ downFrom n
∈-downFrom⁺ i<n = ∈-applyDownFrom⁺ id i<n
∈-downFrom⁻ : ∀ {n i} → i ∈ downFrom n → i < n
∈-downFrom⁻ p with _ , i<n , refl ← ∈-applyDownFrom⁻ id p = i<n
module _ {n} {f : Fin n → A} where
∈-tabulate⁺ : ∀ i → f i ∈ tabulate f
∈-tabulate⁺ = Membership.∈-tabulate⁺ (≡.setoid _)
∈-tabulate⁻ : ∀ {v} → v ∈ tabulate f → ∃ λ i → v ≡ f i
∈-tabulate⁻ = Membership.∈-tabulate⁻ (≡.setoid _)
module _ {p} {P : A → Set p} (P? : Decidable P) where
∈-filter⁺ : ∀ {x xs} → x ∈ xs → P x → x ∈ filter P? xs
∈-filter⁺ = Membership.∈-filter⁺ (≡.setoid A) P? (≡.resp P)
∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v
∈-filter⁻ = Membership.∈-filter⁻ (≡.setoid A) P? (≡.resp P)
module _ {r} {R : Rel A r} (R? : Binary.Decidable R) where
∈-derun⁻ : ∀ xs {z} → z ∈ derun R? xs → z ∈ xs
∈-derun⁻ xs z∈derun[R,xs] = Membership.∈-derun⁻ (≡.setoid A) R? xs z∈derun[R,xs]
∈-deduplicate⁻ : ∀ xs {z} → z ∈ deduplicate R? xs → z ∈ xs
∈-deduplicate⁻ xs z∈dedup[R,xs] = Membership.∈-deduplicate⁻ (≡.setoid A) R? xs z∈dedup[R,xs]
module _ (_≈?_ : DecidableEquality A) where
∈-derun⁺ : ∀ {xs z} → z ∈ xs → z ∈ derun _≈?_ xs
∈-derun⁺ z∈xs = Membership.∈-derun⁺ (≡.setoid A) _≈?_ (flip trans) z∈xs
∈-deduplicate⁺ : ∀ {xs z} → z ∈ xs → z ∈ deduplicate _≈?_ xs
∈-deduplicate⁺ z∈xs = Membership.∈-deduplicate⁺ (≡.setoid A) _≈?_ (λ c≡b a≡b → trans a≡b (sym c≡b)) z∈xs
>>=-∈↔ : ∀ {xs} {f : A → List B} {y} →
(∃ λ x → x ∈ xs × y ∈ f x) ↔ y ∈ (xs >>= f)
>>=-∈↔ {xs = xs} {f} {y} =
(∃ λ x → x ∈ xs × y ∈ f x) ↔⟨ Any↔ ⟩
Any (Any (y ≡_) ∘ f) xs ↔⟨ >>=↔ ⟩
y ∈ (xs >>= f) ∎
where open Related.EquationalReasoning
⊛-∈↔ : ∀ (fs : List (A → B)) {xs y} →
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ (fs ⊛ xs)
⊛-∈↔ fs {xs} {y} =
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔⟨ Σ.cong (↔-id _) (∃∃↔∃∃ _) ⟩
(∃ λ f → f ∈ fs × ∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Σ.cong (↔-id _) (↔-id _ ⟨ _×-cong_ ⟩ Any↔) ⟩
(∃ λ f → f ∈ fs × Any (_≡_ y ∘ f) xs) ↔⟨ Any↔ ⟩
Any (λ f → Any (_≡_ y ∘ f) xs) fs ↔⟨ ⊛↔ ⟩
y ∈ (fs ⊛ xs) ∎
where open Related.EquationalReasoning
⊗-∈↔ : ∀ {xs ys} {x : A} {y : B} →
(x ∈ xs × y ∈ ys) ↔ (x , y) ∈ (xs ⊗ ys)
⊗-∈↔ {xs = xs} {ys} {x} {y} =
(x ∈ xs × y ∈ ys) ↔⟨ ⊗↔′ ⟩
Any (x ≡_ ⟨×⟩ y ≡_) (xs ⊗ ys) ↔⟨ Any-cong (λ _ → ×-≡,≡↔≡) (↔-id _) ⟩
(x , y) ∈ (xs ⊗ ys) ∎
where
open Related.EquationalReasoning
∈-length : ∀ {x : A} {xs} → x ∈ xs → 0 < length xs
∈-length = Membership.∈-length (≡.setoid _)
∈-lookup : ∀ {xs : List A} i → lookup xs i ∈ xs
∈-lookup {xs = xs} i = Membership.∈-lookup (≡.setoid _) xs i
module _ {_•_ : Op₂ A} where
foldr-selective : Selective _≡_ _•_ → ∀ e xs →
(foldr _•_ e xs ≡ e) ⊎ (foldr _•_ e xs ∈ xs)
foldr-selective = Membership.foldr-selective (≡.setoid A)
∈-allFin : ∀ {n} (k : Fin n) → k ∈ allFin n
∈-allFin = ∈-tabulate⁺
[]∈inits : ∀ {a} {A : Set a} (as : List A) → [] ∈ inits as
[]∈inits _ = here refl
finite : (inj : ℕ ↣ A) → ∀ xs → ¬ (∀ i → Injection.to inj i ∈ xs)
finite inj [] fᵢ∈[] = ¬Any[] (fᵢ∈[] 0)
finite inj (x ∷ xs) fᵢ∈x∷xs = ¬¬-excluded-middle helper
where
open Injection inj renaming (injective to f-inj)
f : ℕ → _
f = to
not-x : ∀ {i} → f i ≢ x → f i ∈ xs
not-x {i} fᵢ≢x with fᵢ∈x∷xs i
... | here fᵢ≡x = contradiction fᵢ≡x fᵢ≢x
... | there fᵢ∈xs = fᵢ∈xs
helper : ¬ Dec (∃ λ i → f i ≡ x)
helper (no fᵢ≢x) = finite inj xs (λ i → not-x (fᵢ≢x ∘ _,_ i))
helper (yes (i , fᵢ≡x)) = finite f′-inj xs f′ⱼ∈xs
where
f′ : ℕ → _
f′ j with i ≤? j
... | yes _ = f (suc j)
... | no _ = f j
∈-if-not-i : ∀ {j} → i ≢ j → f j ∈ xs
∈-if-not-i i≢j = not-x (i≢j ∘ f-inj ∘ trans fᵢ≡x ∘ sym)
lemma : ∀ {k j} → i ≤ j → i ≰ k → suc j ≢ k
lemma i≤j i≰1+j refl = i≰1+j (m≤n⇒m≤1+n i≤j)
f′ⱼ∈xs : ∀ j → f′ j ∈ xs
f′ⱼ∈xs j with i ≤? j
... | yes i≤j = ∈-if-not-i (<⇒≢ (s≤s i≤j))
... | no i≰j = ∈-if-not-i (<⇒≢ (≰⇒> i≰j) ∘ sym)
f′-injective′ : Injective _≡_ _≡_ f′
f′-injective′ {j} {k} eq with i ≤? j | i ≤? k
... | yes i≤j | yes i≤k = suc-injective (f-inj eq)
... | yes i≤j | no i≰k = contradiction (f-inj eq) (lemma i≤j i≰k)
... | no i≰j | yes i≤k = contradiction (f-inj eq) (lemma i≤k i≰j ∘ sym)
... | no i≰j | no i≰k = f-inj eq
f′-inj : ℕ ↣ _
f′-inj = record
{ to = f′
; cong = ≡.cong f′
; injective = f′-injective′
}
there-injective-≢∈ : ∀ {xs} {x y z : A} {x∈xs : x ∈ xs} {y∈xs : y ∈ xs} →
there {x = z} x∈xs ≢∈ there y∈xs →
x∈xs ≢∈ y∈xs
there-injective-≢∈ neq refl eq = neq refl (≡.cong there eq)