Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Binary.Definitions where
open import Agda.Builtin.Equality using (_≡_)
open import Data.Product.Base using (_×_; ∃-syntax)
open import Data.Sum.Base using (_⊎_)
open import Function.Base using (_on_; flip)
open import Level
open import Relation.Binary.Core
open import Relation.Nullary as Nullary using (¬_; Dec)
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A : Set a
B : Set b
C : Set c
Reflexive : Rel A ℓ → Set _
Reflexive _∼_ = ∀ {x} → x ∼ x
Sym : REL A B ℓ₁ → REL B A ℓ₂ → Set _
Sym P Q = P ⇒ flip Q
Symmetric : Rel A ℓ → Set _
Symmetric _∼_ = Sym _∼_ _∼_
Trans : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k
RightTrans : REL A B ℓ₁ → REL B B ℓ₂ → Set _
RightTrans R S = Trans R S R
LeftTrans : REL A A ℓ₁ → REL A B ℓ₂ → Set _
LeftTrans S R = Trans S R R
TransFlip : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k
Transitive : Rel A ℓ → Set _
Transitive _∼_ = Trans _∼_ _∼_ _∼_
Antisym : REL A B ℓ₁ → REL B A ℓ₂ → REL A B ℓ₃ → Set _
Antisym R S E = ∀ {i j} → R i j → S j i → E i j
Antisymmetric : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Antisymmetric _≈_ _≤_ = Antisym _≤_ _≤_ _≈_
Irreflexive : REL A B ℓ₁ → REL A B ℓ₂ → Set _
Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y)
Asymmetric : Rel A ℓ → Set _
Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x)
Dense : Rel A ℓ → Set _
Dense _<_ = ∀ {x y} → x < y → ∃[ z ] x < z × z < y
Connex : REL A B ℓ₁ → REL B A ℓ₂ → Set _
Connex P Q = ∀ x y → P x y ⊎ Q y x
Total : Rel A ℓ → Set _
Total _∼_ = Connex _∼_ _∼_
data Tri (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where
tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C
tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C
tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C
Trichotomous : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y)
where _>_ = flip _<_
Max : REL A B ℓ → B → Set _
Max _≤_ T = ∀ x → x ≤ T
Maximum : Rel A ℓ → A → Set _
Maximum = Max
Min : REL A B ℓ → A → Set _
Min R = Max (flip R)
Minimum : Rel A ℓ → A → Set _
Minimum = Min
Cotransitive : Rel A ℓ → Set _
Cotransitive _#_ = ∀ {x y} → x # y → ∀ z → (x # z) ⊎ (z # y)
Tight : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Tight _≈_ _#_ = ∀ x y → (¬ x # y → x ≈ y) × (x ≈ y → ¬ x # y)
Monotonic₁ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _
Monotonic₁ _≤_ _⊑_ f = f Preserves _≤_ ⟶ _⊑_
Antitonic₁ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _
Antitonic₁ _≤_ _⊑_ f = f Preserves (flip _≤_) ⟶ _⊑_
Monotonic₂ : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _
Monotonic₂ _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ _⊑_ ⟶ _≼_
MonotonicAntitonic : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _
MonotonicAntitonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ (flip _⊑_) ⟶ _≼_
AntitonicMonotonic : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _
AntitonicMonotonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ _⊑_ ⟶ _≼_
Antitonic₂ : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _
Antitonic₂ _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ (flip _⊑_) ⟶ _≼_
Adjoint : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → (B → A) → Set _
Adjoint _≤_ _⊑_ f g = ∀ {x y} → (f x ⊑ y → x ≤ g y) × (x ≤ g y → f x ⊑ y)
_⟶_Respects_ : (A → Set ℓ₁) → (B → Set ℓ₂) → REL A B ℓ₃ → Set _
P ⟶ Q Respects _∼_ = ∀ {x y} → x ∼ y → P x → Q y
_Respects_ : (A → Set ℓ₁) → Rel A ℓ₂ → Set _
P Respects _∼_ = P ⟶ P Respects _∼_
_Respectsʳ_ : REL A B ℓ₁ → Rel B ℓ₂ → Set _
_∼_ Respectsʳ _≈_ = ∀ {x} → (x ∼_) Respects _≈_
_Respectsˡ_ : REL A B ℓ₁ → Rel A ℓ₂ → Set _
P Respectsˡ _∼_ = ∀ {y} → (flip P y) Respects _∼_
_Respects₂_ : Rel A ℓ₁ → Rel A ℓ₂ → Set _
P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_)
Substitutive : Rel A ℓ₁ → (ℓ₂ : Level) → Set _
Substitutive {A = A} _∼_ p = (P : A → Set p) → P Respects _∼_
Irrelevant : REL A B ℓ → Set _
Irrelevant _∼_ = ∀ {x y} → Nullary.Irrelevant (x ∼ y)
Recomputable : REL A B ℓ → Set _
Recomputable _∼_ = ∀ {x y} → Nullary.Recomputable (x ∼ y)
Stable : REL A B ℓ → Set _
Stable _∼_ = ∀ x y → Nullary.Stable (x ∼ y)
WeaklyDecidable : REL A B ℓ → Set _
WeaklyDecidable _∼_ = ∀ x y → Nullary.WeaklyDecidable (x ∼ y)
Decidable : REL A B ℓ → Set _
Decidable _∼_ = ∀ x y → Dec (x ∼ y)
DecidableEquality : (A : Set a) → Set _
DecidableEquality A = Decidable {A = A} _≡_
Universal : REL A B ℓ → Set _
Universal _∼_ = ∀ x y → x ∼ y
Empty : REL A B ℓ → Set _
Empty _∼_ = ∀ {x y} → ¬ (x ∼ y)
record NonEmpty {A : Set a} {B : Set b}
(T : REL A B ℓ) : Set (a ⊔ b ⊔ ℓ) where
constructor nonEmpty
field
{x} : A
{y} : B
proof : T x y