Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Monads
------------------------------------------------------------------------

-- Note that currently the monad laws are not included here.

{-# OPTIONS --cubical-compatible --safe #-}

module Effect.Monad where

open import Data.Bool.Base using (Bool; true; false; not)
open import Data.Unit.Polymorphic.Base using ()

open import Effect.Choice
open import Effect.Empty
open import Effect.Applicative
open import Function.Base using (id; flip; _$′_; _∘′_)
open import Level using (Level; suc; _⊔_)

private
  variable
    f g g₁ g₂ : Level
    A B C : Set f

------------------------------------------------------------------------
-- The type of raw monads

record RawMonad (F : Set f  Set g) : Set (suc f  g) where
  infixl 1 _>>=_ _>>_ _>=>_
  infixr 1 _=<<_ _<=<_
  field
    rawApplicative : RawApplicative F
    _>>=_ : F A  (A  F B)  F B

  open RawApplicative rawApplicative public

  _>>_ : F A  F B  F B
  _>>_ = _*>_

  _=<<_ : (A  F B)  F A  F B
  _=<<_ = flip _>>=_

  Kleisli : Set f  Set f  Set (f  g)
  Kleisli A B = A  F B

  _>=>_ : Kleisli A B  Kleisli B C  Kleisli A C
  (f >=> g) a = f a >>= g

  _<=<_ : Kleisli B C  Kleisli A B  Kleisli A C
  _<=<_ = flip _>=>_

  when : Bool  F   F 
  when true m = m
  when false m = pure _

  unless : Bool  F   F 
  unless = when ∘′ not

-- When level g=f, a join/μ operator is definable

module Join {F : Set f  Set f} (M : RawMonad F) where
  open RawMonad M

  join : F (F A)  F A
  join = _>>= id

-- Smart constructor

module _ where

  open RawMonad
  open RawApplicative

  mkRawMonad :
    (F : Set f  Set g) 
    (pure :  {A}  A  F A) 
    (bind :  {A B}  F A  (A  F B)  F B) 
    RawMonad F
  mkRawMonad F pure _>>=_ .rawApplicative =
    mkRawApplicative _ pure $′ λ mf mx  do
      f  mf
      x  mx
      pure (f x)
  mkRawMonad F pure _>>=_ ._>>=_ = _>>=_

------------------------------------------------------------------------
-- The type of raw monads with a zero

record RawMonadZero (F : Set f  Set g) : Set (suc f  g) where
  field
    rawMonad : RawMonad F
    rawEmpty : RawEmpty F

  open RawMonad rawMonad public
  open RawEmpty rawEmpty public

  rawApplicativeZero : RawApplicativeZero F
  rawApplicativeZero = record
    { rawApplicative = rawApplicative
    ; rawEmpty = rawEmpty
    }

------------------------------------------------------------------------
-- The type of raw monadplus

record RawMonadPlus (F : Set f  Set g) : Set (suc f  g) where
  field
    rawMonadZero : RawMonadZero F
    rawChoice    : RawChoice F

  open RawMonadZero rawMonadZero public
  open RawChoice rawChoice public

  rawAlternative : RawAlternative F
  rawAlternative = record
    { rawApplicativeZero = rawApplicativeZero
    ; rawChoice = rawChoice
    }

------------------------------------------------------------------------
-- The type of raw monad transformer

-- F has been RawMonadT'd as TF
record RawMonadTd (F : Set f  Set g₁) (TF : Set f  Set g₂) : Set (suc f  g₁  g₂) where
  field
    lift : F A  TF A
    rawMonad : RawMonad TF

  open RawMonad rawMonad public

RawMonadT : (T : (Set f  Set g₁)  (Set f  Set g₂))  Set (suc f  suc g₁  g₂)
RawMonadT T =  {M}  RawMonad M  RawMonadTd M (T M)