Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions for types of functions.
------------------------------------------------------------------------

-- The contents of this file should usually be accessed from `Function`.

{-# OPTIONS --cubical-compatible --safe #-}

module Function.Definitions where

open import Data.Product.Base using (; _×_)
open import Level using (Level)
open import Relation.Binary.Core using (Rel)

private
  variable
    a ℓ₁ ℓ₂ : Level
    A B : Set a

------------------------------------------------------------------------
-- Basic definitions

module _
  (_≈₁_ : Rel A ℓ₁) -- Equality over the domain
  (_≈₂_ : Rel B ℓ₂) -- Equality over the codomain
  where

  Congruent : (A  B)  Set _
  Congruent f =  {x y}  x ≈₁ y  f x ≈₂ f y

  Injective : (A  B)  Set _
  Injective f =  {x y}  f x ≈₂ f y  x ≈₁ y

  Surjective : (A  B)  Set _
  Surjective f =  y   λ x   {z}  z ≈₁ x  f z ≈₂ y

  Bijective : (A  B)  Set _
  Bijective f = Injective f × Surjective f

  Inverseˡ : (A  B)  (B  A)  Set _
  Inverseˡ f g =  {x y}  y ≈₁ g x  f y ≈₂ x

  Inverseʳ : (A  B)  (B  A)  Set _
  Inverseʳ f g =  {x y}  y ≈₂ f x  g y ≈₁ x

  Inverseᵇ : (A  B)  (B  A)  Set _
  Inverseᵇ f g = Inverseˡ f g × Inverseʳ f g

------------------------------------------------------------------------
-- Strict definitions

-- These are often easier to use once but much harder to compose and
-- reason about.

StrictlySurjective : Rel B ℓ₂  (A  B)  Set _
StrictlySurjective _≈₂_ f =  y   λ x  f x ≈₂ y

StrictlyInverseˡ : Rel B ℓ₂  (A  B)  (B  A)  Set _
StrictlyInverseˡ _≈₂_ f g =  y  f (g y) ≈₂ y

StrictlyInverseʳ : Rel A ℓ₁  (A  B)  (B  A)  Set _
StrictlyInverseʳ _≈₁_ f g =  x  g (f x) ≈₁ x