Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Membership.Propositional.Properties.Core where
open import Data.List.Base using (List)
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.Product.Base as Product using (_,_; ∃; _×_)
open import Function.Base using (flip; id; _∘_)
open import Function.Bundles using (_↔_; mk↔ₛ′)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; cong; resp)
open import Relation.Unary using (Pred; _⊆_)
private
variable
a p q : Level
A : Set a
x : A
xs : List A
find-∈ : (x∈xs : x ∈ xs) → find x∈xs ≡ (x , x∈xs , refl)
find-∈ (here refl) = refl
find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl
module _ {P : Pred A p} where
map∘find : (p : Any P xs) → let x , x∈xs , px = find p in
{f : (x ≡_) ⊆ P} → f refl ≡ px →
Any.map f x∈xs ≡ p
map∘find (here p) hyp = cong here hyp
map∘find (there p) hyp = cong there (map∘find p hyp)
find∘map : ∀ {Q : Pred A q} {xs} (p : Any P xs) (f : P ⊆ Q) →
let x , x∈xs , px = find p in
find (Any.map f p) ≡ (x , x∈xs , f px)
find∘map (here p) f = refl
find∘map (there p) f rewrite find∘map p f = refl
module _ {P : Pred A p} where
∃∈-Any : (∃ λ x → x ∈ xs × P x) → Any P xs
∃∈-Any (x , x∈xs , px) = lose {P = P} x∈xs px
∃∈-Any∘find : (p : Any P xs) → ∃∈-Any (find p) ≡ p
∃∈-Any∘find p = map∘find p refl
find∘∃∈-Any : (p : ∃ λ x → x ∈ xs × P x) → find (∃∈-Any p) ≡ p
find∘∃∈-Any p@(x , x∈xs , px)
rewrite find∘map x∈xs (flip (resp P) px) | find-∈ x∈xs = refl
Any↔ : (∃ λ x → x ∈ xs × P x) ↔ Any P xs
Any↔ = mk↔ₛ′ ∃∈-Any find ∃∈-Any∘find find∘∃∈-Any
lose∘find : ∀ {P : Pred A p} {xs} (p : Any P xs) → ∃∈-Any (find p) ≡ p
lose∘find = ∃∈-Any∘find
find∘lose : ∀ (P : Pred A p) {x xs}
(x∈xs : x ∈ xs) (px : P x) →
find (lose {P = P} x∈xs px) ≡ (x , x∈xs , px)
find∘lose P {x} x∈xs px = find∘∃∈-Any (x , x∈xs , px)