Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-dependent product combinators for propositional equality
-- preserving functions
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Product.Function.NonDependent.Propositional where

open import Data.Product.Base using (_×_; map)
open import Data.Product.Function.NonDependent.Setoid
open import Data.Product.Relation.Binary.Pointwise.NonDependent
  using (_×ₛ_; Pointwise-≡↔≡)
open import Function.Base using (id)
open import Function.Bundles
  using (Inverse; _⟶_; _⇔_; _↣_; _↠_; _⤖_; _↩_; _↪_; _↔_)
open import Function.Properties.Inverse as Inv
  using (Inverse⇒Equivalence; Inverse⇒Injection; Inverse⇒Surjection;
         Inverse⇒Bijection)
open import Function.Related.Propositional
  using (_∼[_]_; implication; reverseImplication; equivalence; injection;
         reverseInjection; leftInverse; surjection; bijection)
import Function.Construct.Composition as Compose
open import Level using (Level; _⊔_)
open import Relation.Binary hiding (_⇔_)
open import Relation.Binary.PropositionalEquality.Properties using (setoid)

private
  variable
    a b c d : Level
    A B C D : Set a

------------------------------------------------------------------------
-- Helper lemma

private
  liftViaInverse : {R :  {a b ℓ₁ ℓ₂}  REL (Setoid a ℓ₁) (Setoid b ℓ₂) (a  b  ℓ₁  ℓ₂)} 
                   (∀ {a b c ℓ₁ ℓ₂ ℓ₃} {S : Setoid a ℓ₁} {T : Setoid b ℓ₂} {U : Setoid c ℓ₃}  R S T  R T U  R S U) 
                   (∀ {a b ℓ₁ ℓ₂} {S : Setoid a ℓ₁} {T : Setoid b ℓ₂}  Inverse S T  R S T) 
                   (R (setoid A) (setoid C)  R (setoid B) (setoid D)  R (setoid A ×ₛ setoid B) (setoid C ×ₛ setoid D)) 
                   R (setoid A) (setoid C)  R (setoid B) (setoid D) 
                   R (setoid (A × B)) (setoid (C × D))
  liftViaInverse trans inv⇒R lift RAC RBD =
    Inv.transportVia trans inv⇒R (Inv.sym Pointwise-≡↔≡) (lift RAC RBD) Pointwise-≡↔≡

------------------------------------------------------------------------
-- Combinators for various function types

infixr 2 _×-⟶_ _×-⇔_ _×-↣_ _×-↠_ _×-⤖_ _×-↩_ _×-↪_ _×-↔_

_×-⟶_ : A  B  C  D  (A × C)  (B × D)
_×-⟶_ = liftViaInverse Compose.function Inv.toFunction _×-function_

_×-⇔_ : A  B  C  D  (A × C)  (B × D)
_×-⇔_ = liftViaInverse Compose.equivalence Inverse⇒Equivalence _×-equivalence_

_×-↣_ : A  B  C  D  (A × C)  (B × D)
_×-↣_ = liftViaInverse Compose.injection Inverse⇒Injection _×-injection_

_×-↠_ : A  B  C  D  (A × C)  (B × D)
_×-↠_ = liftViaInverse Compose.surjection Inverse⇒Surjection _×-surjection_

_×-⤖_ : A  B  C  D  (A × C)  (B × D)
_×-⤖_ = liftViaInverse Compose.bijection Inverse⇒Bijection _×-bijection_

_×-↩_ : A  B  C  D  (A × C)  (B × D)
_×-↩_ = liftViaInverse Compose.leftInverse Inverse.leftInverse _×-leftInverse_

_×-↪_ : A  B  C  D  (A × C)  (B × D)
_×-↪_ = liftViaInverse Compose.rightInverse Inverse.rightInverse _×-rightInverse_

_×-↔_ : A  B  C  D  (A × C)  (B × D)
_×-↔_ = liftViaInverse Compose.inverse id _×-inverse_

infixr 2 _×-cong_

_×-cong_ :  {k}  A ∼[ k ] B  C ∼[ k ] D  (A × C) ∼[ k ] (B × D)
_×-cong_ {k = implication}         = _×-⟶_
_×-cong_ {k = reverseImplication}  = _×-⟶_
_×-cong_ {k = equivalence}         = _×-⇔_
_×-cong_ {k = injection}           = _×-↣_
_×-cong_ {k = reverseInjection}    = _×-↣_
_×-cong_ {k = leftInverse}         = _×-↪_
_×-cong_ {k = surjection}          = _×-↠_
_×-cong_ {k = bijection}           = _×-↔_