{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.End.Limit where
open import Level
open import Categories.Category using (Category)
open import Categories.Category.Construction.TwistedArrow using (Codomain)
open import Categories.Category.Equivalence as SE using (StrongEquivalence)
open import Categories.Category.Equivalence.Preserves using (pres-Terminal)
open import Categories.Diagram.End using () renaming (End to ∫)
open import Categories.Diagram.End.Properties using (End⇒Terminal; Terminal⇒End; end-η; end-unique; end-identity; end-η-resp-≈; end-η-resp-∘)
open import Categories.Diagram.Limit using (Limit)
open import Categories.Diagram.Limit.Properties using (≃-resp-lim)
open import Categories.Diagram.Wedge using (module Wedge-Morphism)
open import Categories.Diagram.Wedge.Properties using (ConesTwist≅Wedges)
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Instance.Twisted using (Twist; Twistⁿⁱ)
open import Categories.Functor.Limits using (Continuous)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_) renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; sym-associator) renaming (_≃_ to _≃ⁱ_)
open import Categories.Object.Terminal as Terminal
import Categories.Category.Construction.Wedges as Wedges
import Categories.Morphism as M
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ (F : Bifunctor (Category.op C) C D) where
private
Eq = ConesTwist≅Wedges F
module O = M D
open M (Wedges.Wedges F)
open Functor
open StrongEquivalence Eq renaming (F to F⇒; G to F⇐)
End-yields-limit : ∫ F → Limit (Twist C D F)
End-yields-limit ef = record { terminal = pres-Terminal (SE.sym Eq) (End⇒Terminal F ef) }
limit-yields-End : Limit (Twist C D F) → ∫ F
limit-yields-End l = Terminal⇒End F (pres-Terminal Eq (Limit.terminal l))
End-as-Limit : (end : ∫ F) → (l : Limit (Twist C D F)) → ∫.wedge end ≅ F₀ F⇒ (Limit.terminal.⊤ l)
End-as-Limit end l = Terminal.up-to-iso (Wedges.Wedges F) (End⇒Terminal F end) (pres-Terminal Eq terminal)
where
open Limit l
End-as-Limit-on-Obj : (end : ∫ F) → (l : Limit (Twist C D F)) → ∫.E end O.≅ Limit.apex l
End-as-Limit-on-Obj end l = record
{ from = Wedge-Morphism.u (M._≅_.from X≅Y)
; to = Wedge-Morphism.u (M._≅_.to X≅Y)
; iso = record
{ isoˡ = M._≅_.isoˡ X≅Y
; isoʳ = M._≅_.isoʳ X≅Y
}
}
where
X≅Y = End-as-Limit end l
open Category D
module _ {F G : Bifunctor (Category.op C) C D} (F≃G : F ≃ⁱ G) where
≅-yields-end : ∫ F → ∫ G
≅-yields-end ef = limit-yields-End G (≃-resp-lim (Twistⁿⁱ C D F≃G) (End-yields-limit F ef))
module _ {C : Category o ℓ e}
(J : Bifunctor (Category.op C) C D) (F : Functor D E)
{cont : Continuous (o ⊔ ℓ) (ℓ ⊔ e) e F} where
open Category E
open M E
open _≅_
open Iso
open ∫ hiding (E)
private
module F = Functor F
module J = Bifunctor J
module E = Category E
open import Categories.Diagram.Cone.Properties
open import Categories.Diagram.Limit.Properties
module _ (ej : ∫ J) where
private
module ej = ∫ ej
j-limit : Limit (Twist C D J)
j-limit = End-yields-limit J ej
f-limit : Limit (F ∘F (J ∘F Codomain C))
f-limit .Limit.terminal = record
{ ⊤ = F-map-Coneˡ F (Limit.limit j-limit)
; ⊤-is-terminal = cont j-limit
}
f-limit′ : Limit (Twist C E (F ∘F J))
f-limit′ = ≃-resp-lim (sym-associator (Codomain C) J F) f-limit
contF-as-end : ∫ (F ∘F J)
contF-as-end = limit-yields-End (F ∘F J) f-limit′
_ : F.₀ (∫.E ej) ≅ (∫.E contF-as-end)
_ = ≅.refl
Continuous-pres-End : {ej : ∫ J} {ef : ∫ (F ∘F J)} → F.₀ (∫.E ej) ≅ ∫.E ef
Continuous-pres-End {ej} {ef} = end-unique (contF-as-end ej) ef