{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor.Bifunctor module Categories.Diagram.End {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private module D = Category D open D open HomReasoning open Equiv variable A B : Obj f g : A ⇒ B open import Level open import Categories.Diagram.Wedge F open import Categories.NaturalTransformation.Dinatural record End : Set (levelOfTerm F) where field wedge : Wedge module wedge = Wedge wedge open wedge public open Wedge field factor : (W : Wedge) → E W ⇒ wedge.E universal : ∀ {W : Wedge} {A} → wedge.dinatural.α A ∘ factor W ≈ dinatural.α W A unique : ∀ {W : Wedge} {g : E W ⇒ wedge.E} → (∀ {A} → wedge.dinatural.α A ∘ g ≈ dinatural.α W A) → factor W ≈ g η-id : factor wedge ≈ D.id η-id = unique identityʳ unique′ :(∀ {A} → wedge.dinatural.α A ∘ f ≈ wedge.dinatural.α A ∘ g) → f ≈ g unique′ {f = f} {g = g} eq = ⟺ (unique {W = Wedge-∘ wedge f} refl) ○ unique (⟺ eq)